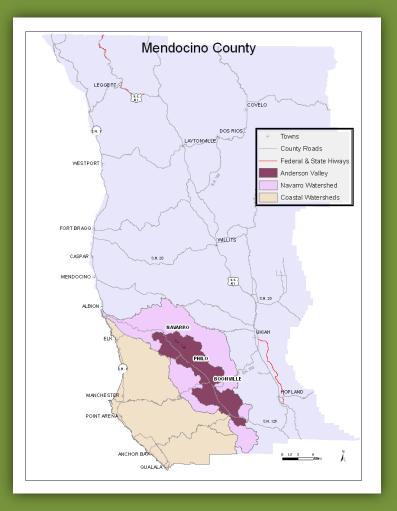
Meeting irrigated agriculture water needs in the Navarro River Watershed

> Glenn McGourty, D. Lewis, J. Harper, R. Elkins, J. Metz, J. Nosera, P. Papper, and R. Sanford *February 19, 2013*


Overview

- Introduction
 - Setting
 - Drivers
 - Financial Supporters
- Project Goals
- Methods
 - Data Compilation
 - Grower Surveys
 - Field Measurements
 - GIS Mapping & Modeling
 - Water Rights & Demand

• Results

- Hydrology
- Water Use Patterns
 - Grower Survey Results
 - Water Rights
- Water Demand Estimates
 - Current
 - Potential Futures
- Recommendations
- Questions & Discussion

Navarro River Watershed, Mendocino County

- Southern Mendocino County, California
- Drains Coast Range mountains to the Pacific Ocean
- Navarro River
 - 201,200 acres
 - Largest coastal watershed in Mendocino County
- Anderson Valley
 - 67,840 acres (Total)
 - ~3100 acres of irrigated agriculture (*vineyard*, *orchard*, *pasture*, *other*)

Anderson Valley, Mendocino County

- Subset of larger Navarro River watershed
- Agricultural
 - Historically timber & grazing
- 67,840 acres (Total)
- ~3100 acres of irrigated agriculture
- 10 Planning Watersheds
 - Mill Creek
 - Floodgate Creek
 - Hendy Woods
 - Upper Navarro River
 - Lower Indian Creek
 - Con Creek
 - Robinson Creek
 - Middle Rancheria Creek
 - Anderson Creek
 - Maple Creek
- RAIN = Robinson, Anderson, Indian, Navarro

Drivers

- Local interest in continued quality land stewardship& sustainability
- State & Federal water quality regulations
 - Assembly Bill 2121
 - Water Code section 1259.4
 - NMFS Chinook salmon
 Critical Habitat Designation
 (70 FR 52488)

Financial Support

Protecting nature. Preserving life.[™]

Project Goals

- Improve the understanding of agricultural water needs and uses within the Navarro River Watershed
- Evaluate the efficiency of the irrigation practices used by growers in the Navarro River Watershed
- Estimate the amount of potential land area available for agricultural expansion in the Navarro watershed using land form features
 - Existing cleared land
 - Slopes <10% & <20%
- **Inform** long term resource planning

Methods | Data Compilation

• Public Data

- USGS Navarro River gauge 11468000, located near Navarro, 1951-2011
- SWRCB Anderson Valley water rights database
- Mendocino County Agricultural Department Crop Reports
- Private Data
 - Roederer reference evapotranspiration (ETo)
 - Anderson Valley Winegrowers Association Acreage Data

Spatial Data

- USDA National Agricultural Imagery Program NAIP Aerial Imagery
- USGS National Elevation
 Dataset (NED) topography
- CalWater 2.2.1 Watershed boundaries
- Center for Environmental Management & Restoration (CEMAR) - Vineyards & Ponds (private)

Methods | Grower Surveys

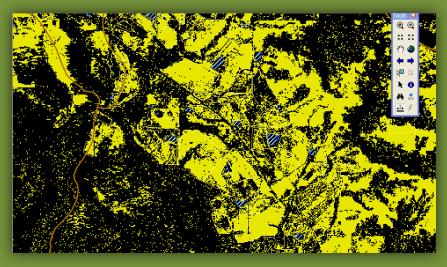
- Adapted surveys from prior effort focused on the Russian River watershed (Lewis et al. 2008)
- Sent to a large segment of the Anderson Valley winegrape grower's community with support from the AVWA.

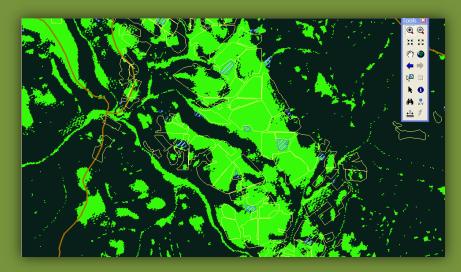
- Designed to document past and present onfarm water use patterns
- Inquired about grower awareness of and participation in existing conservation efforts and their motivations for participation

Methods | Field Measurements (System Uniformity)

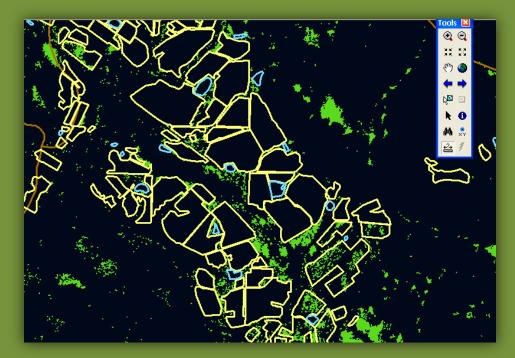
Methods | Field Measurements (Kc)

- Water use and crop coefficients (Kc) are highly correlated
- Used Paso Panel technique (*Battany* 2012) to directly measure canopy shaded area on representative sites and trellis designs in the Anderson Valley


Methods | Existing vineyard acreage


- Digitized field boundaries in a GIS using NAIP 2009 aerial imagery
- NAIP = National Agricultural Imagery Program USDA
- 2 similar efforts:
 UCCE (2009)
 CEMAR (2012)

Methods | Potential Future Intensive Agricultural Land


- 2009 NAIP imagery used to derive a gridbased landcover classification
 - Forest
 - Open grassland
- National Elevation Data (NED) used to derive slope grids
 - Reclassified into <10%
 & <20% binary grids

Methods | Potential Future Intensive Agricultural Land

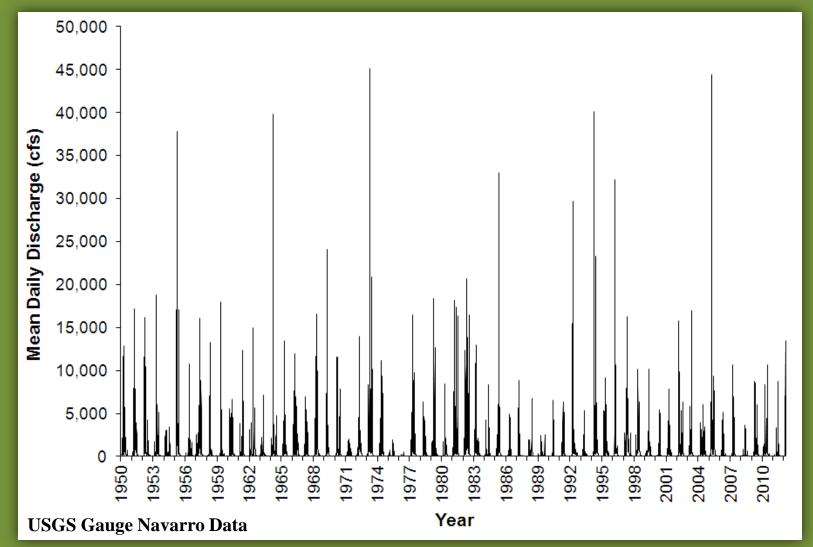
- CEMAR data used to exclude existing vineyard & reservoirs from analysis
- Constrained to viticulturally active portion of Anderson Valley

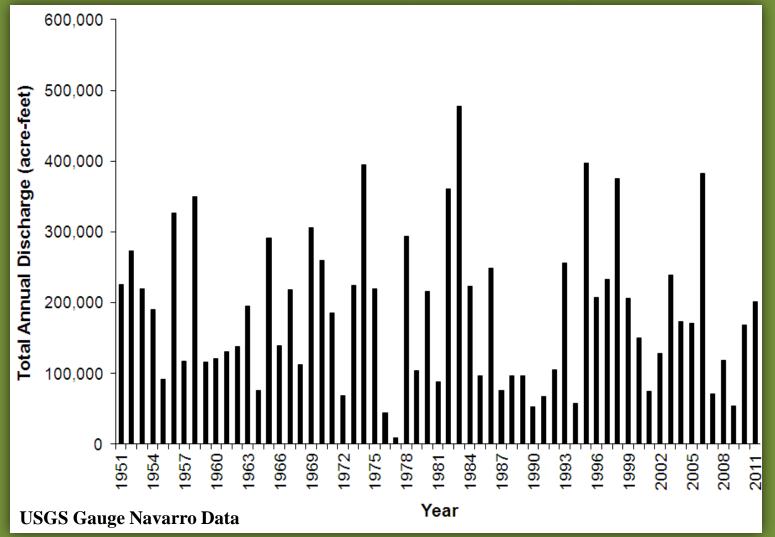
Methods | Existing Water Rights

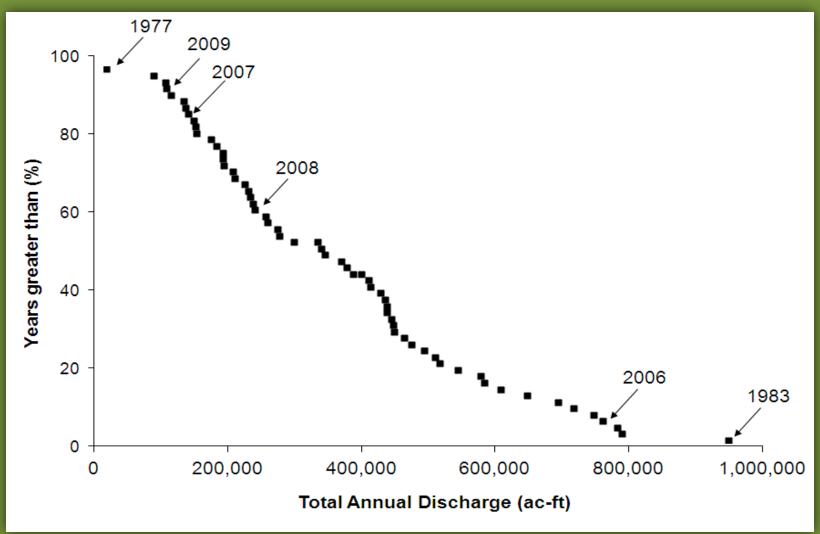
- Focus on Surface Diversions & Ponds
- Summarized

 existing water
 rights for the
 Anderson Valley
 (SWRCB Data)

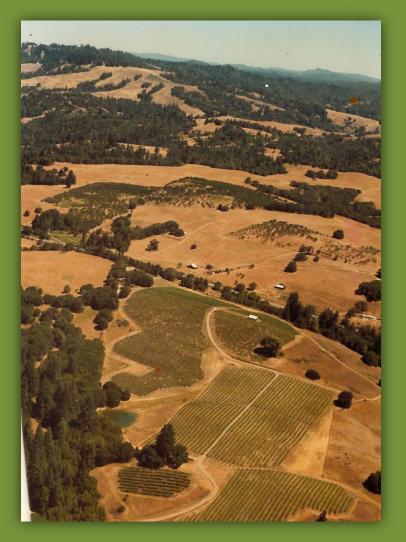
Methods | Irrigation Demand 1

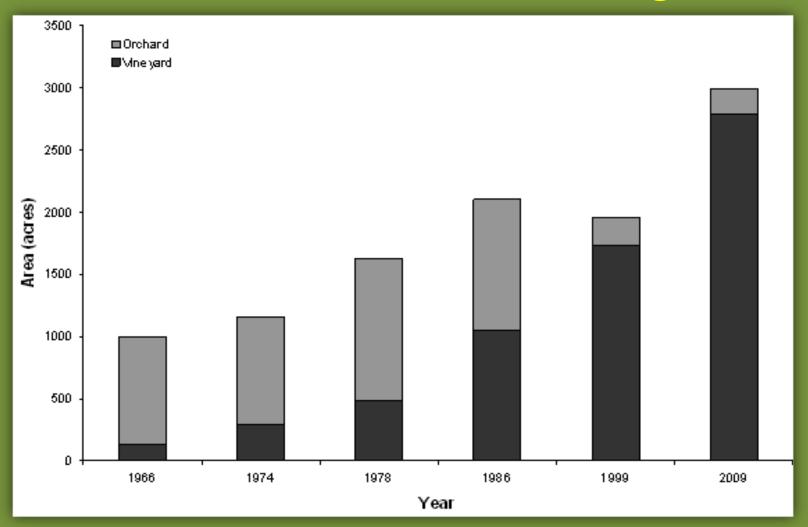

Irrigation demand was calculated for the majority of soil series within vineyard boundaries



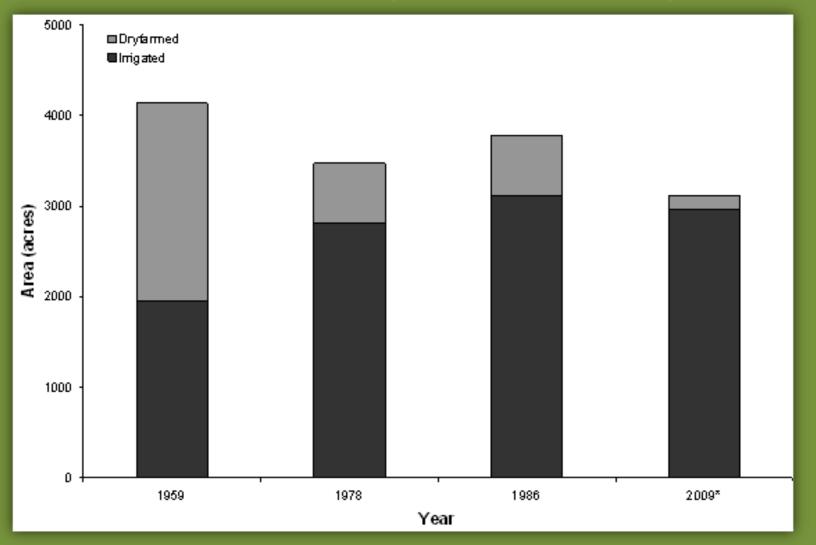

Methods | Irrigation Demand 2

• Calculating irrigation demand (ID) relies on the known relationships between evapo-transpiration (ETo), crop coefficients (Kc), and soil available water capacity (AWC)


ETo *Kc-AWC=ID

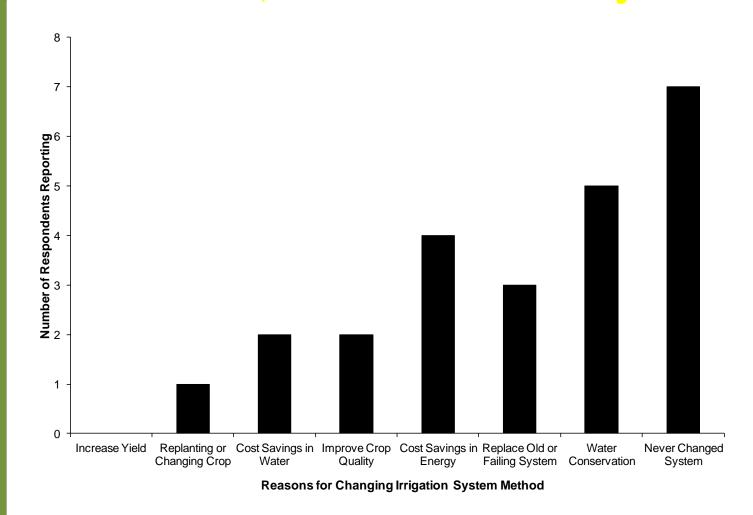


Results | Agricultural Change

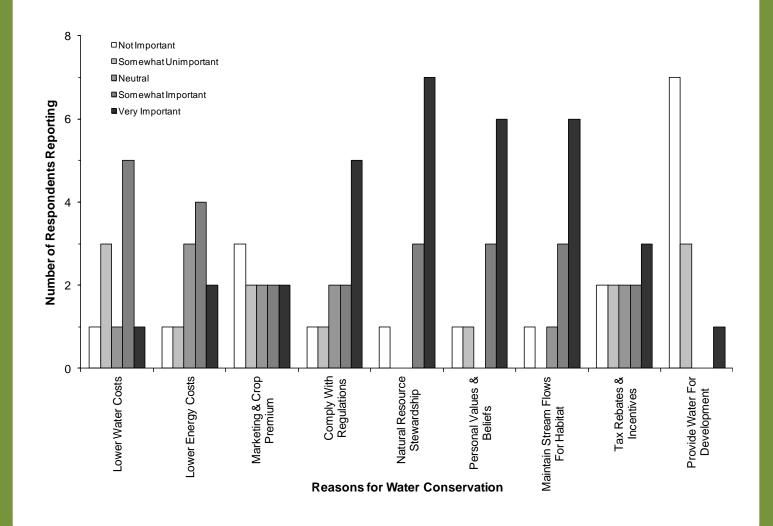


Results | Farmed Acreage

Results | Irrigated Acreage



Results | Grower Surveys


Surveyed Growers' Farmed Acreage as % of Total Acreage

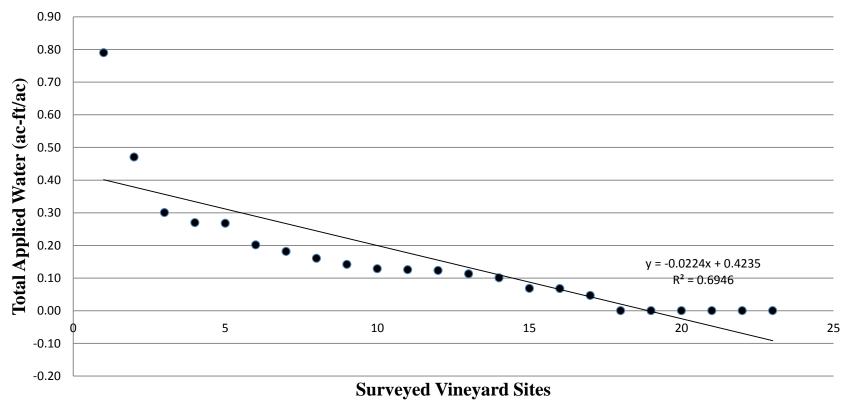
	Vineyar d	Orchar d	Pasture	Other	Totals
Acreage Covered by Survey Respondents	1125 (40%)	191 (93%)	3 (5%)	22 (43%)	1341 (43%)
Total Acreage in Study Area	2790	206	66	50	3111

Results | Grower Surveys

Results | Grower Surveys

Irrigation system uniformity in grape vineyards and apple orchards during 2009 field surveys

Crop	Sample Size	Mean	Standard Deviation	Min	Max
Grapes	26	90%	6.6%	68.7%	96%
Orchards	3	72%	41.4%	41.4%	88%


Irrigated Acres by Water Source Among Surveyed Growers

Source	Vineyar d	Orchard	Other	Pastur e	Totals
Groundwater	22.5	0	20.5	0	43
Direct Diversion	102	96	1	3	202
Off-stream storage	1204	50	0	0	1254
Total Surveyed Acreage	1328.5	146	21.5	3	1499

Frost Protection Methods and Practices Among Surveyed Growers

Methods	Vineyard	Orchard	Other	AllAg
No Protection	255	111	19.5	385.5
Overhead	947	80	2	1029
Fan	70	0	0	70
Microsprinkler	67	0	0	67
Total Surveyed Acreage	1339	191	21.5	1551.5

Applied Water during the 2009 growing season at 25 vineyards in the Anderson Valley, CA

Results | Water Rights

Count of Existing Water Rights in Anderson Valley	264
Existing Water Rights (<i>Face Value</i>)	9635 ac-ft/yr
Total Pond Surface Area	140 acres (<i>Avg pond size =0.8 acres</i>)
Count of Ponds	165

Existing water rights in Anderson Valley are generous. Not all agricultural ponds – some used for wildlife.

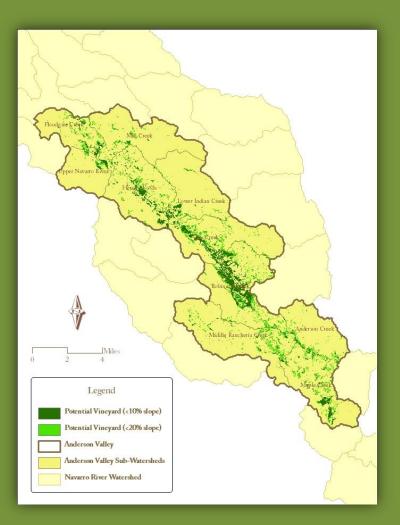
Results | Water Use Practices - Vineyards

• Irrigation

- Average 11 events
- Average 56 hours total per season
- Frost protection
 - Average 7 events
 - Average 38 hours total per season
- Most irrigation happens between July 1 – Oct 1

Results | Water Use Practices - Orchards

- Irrigation
 - Average 8 events
 - Average 19 hours total per season


Results | Water Demand

Source	Total Water Use
Estimated Method (Full-ET)	2272 -2905 (ac-ft/yr)
Vineyard Irrigation (Grower Survey*)	537 ac-ft/yr (average)
Vineyard Frost Protection (Grower Survey)	222 ac-ft/yr
Orchard (Grower Survey)	457 ac-ft/yr

*Most vineyards in the Anderson Valley are growing for quality using Regulated Deficit Irrigation (RDI) practices.

Methods | Potential Future Intensive Agricultural Land

	Acres
AV Total Area	67000
Existing Vineyard	2900
Potential new at 10% slope threshold	3200
Potential new at 20% slope threshold	6700

Recommendations

- 1. Establish a program to provide growers with irrigation system evaluation service
- 2. Form productive partnerships among diverse stakeholders to provide input into State water policy
- 3. Investigate alternative water sources and solutions to relieve the pressure from summer surface water diversions
- 4. Assess domestic and commercial water use in the watershed

Thank You

