Soil Prep for Vegetable Gardens

May 2017

University of **California** Agriculture and Natural Resources

UCCE Master Gardener Program Monterey and Santa Cruz Counties

What You Will Get

- The basics of soil science and why you should care
- What makes healthy, fertile soil good
- How to improve your own soil
- Hands-on soil prep tips and tricks

"Humankind owes its existence to a six-inch layer of topsoil and the fact that it rains." ~Anonymous

Why Should I Care About My Soil?

- Your life depends on it
- It's the second largest carbon sink (3%)
- Sustainably higher yields
- Easy to work
- Conserves water
- Fewer weeds
- Diverts landfill

What is soil? Components

Mineral Particle Types

Particles Aggregate

Soil components together

It's chemistry baby

LIFE 8e, Figure 36.6

LIFE: THE SCIENCE OF BIOLOGY, Eighth Edition @ 2007 Sinauer Associates, Inc. and W. H. Freeman & Co.

Cation Exchange Capacity (CEC) a soil chemical property

+ Positive cations	- Negative anions
calcium (Ca2+)	chloride (Cl-)
magnesium (Mg2+)	nitrate (No3-)
ammonium (NH4+)	sulphate (S04)-2
potassium (K+)	phosphate (H2PO4- and PO4-)
hydrogen (H+)	borate (BO3-)
sodium (Na+)	molybdate (MoO4–)
aluminium (Al3+)	
iron (Fe2+)	
manganese (Mn2+)	
zinc (Zn2+)	
copper (Cu2+).	

Soil Science in a Nutshell – Chemical

Nutrition: *Macronutrients* are needed in relatively large amounts by plants.

Element	Symbol	Source	Form Used		
Oxygen	0	Air/Water	H ₂ O		
Hydrogen	н	Air/Water	H ₂ O		
Carbon	С	Air/Water	CO ₂		
Nitrogen	Ν	Soil	NO ₃ ⁻ , NH ₄ ⁺		
Phosphorus	Р	Soil	H ₂ PO ₄ & HF	PO ₄ ²⁻	
Potassium	К	Soil	K ⁺		Nitrogen: key nutrient in plant growth.
Calcium	Ca	Soil	Ca ₂ ⁺	FED	21% N in a 50 lb. bag = 10.5 lbs. N
Magnesium	Mg	Soil	Mg ²⁺	21-3-20	Phosphorus: important for establishment. 3% P in a 50 lb.
Sulfur	S	Soil	SO_4^-	50 lbs,	Potassium: will increase stress tolerance.

UC Master Gardeners of Monterey Bay

۵.

Soil Science in a Nutshell – Chemical

Nutrition: *Micronutrients* are needed in relatively small amounts by plants

Element	Symbol	Source	Form Used
Iron	Fe	Soil	Fe ²⁺
Manganese	Mn	Soil	Mn ²⁺
Boron	В	Soil	$H_2BO_3^-$
Molybdenum	Мо	Soil	MoO ₄ ²⁻
Copper	Cu	Soil	Cu ²⁺
Zinc	Zn	Soil	Zn ²⁺
Chlorine	Cl	Soil	Cl⁻

Slides on Nutrient deficiencies

Soil Science in a Nutshell – Chemical

Soil pH

pH is a figure expressing the acidity or alkalinity of a solution

- 7 is neutral
- lower values are more acid
- higher values more alkaline.

So what matters about organic matter?

Microbe jobs

Decomposers

Worms and macro-fauna eat plant residue, aerate soil, excrete nutrient rich casts

Saprophytes

Bacteria and fungi eat decaying plant material, recycle into nutrients and humus, make nutrients available to plants

Symbionts

Form beneficial associations with plants such as nitrogen fixing bacteria and mycorrhizae root extensions

Nonmycorrhizal Rhizosphere

What lives in 1 Gram of healthy soil?

Bacteria	3,000,000 to 500,000,000
Actinomycetes	1,000,000 to 20,000,000
Fungi	5,000 to 1,000,000
Yeast	1,000 to 1,000,000
Protozoa	1,000 to 500,000
Algae	1,000 to 500,000
Nematodes	10 to 5,000

Systemic Thinking

Review: Benefits of Organic Matter

Chunky	makes space for air and water
Delicious	provides food for decomposers
Sticky	produces compounds that improve particle aggregation which improves soil structure
Balance	corrects soil pH towards neutral
Nutritious	makes nutrients in solution available to the plant
Retain	aggregate structure holds pockets of water, like a sponge
Drain	chunky spaces help water ultimately drain through
Store	puts a little carbon back in the soil (aka sequestration)
Resist	diverse biome improves immunity to certain soil borne diseases
Reduce Loss	mulching helps retain water, protect soil surface and reduce weeds

PRACTICAL APPLICATION

What About MY Backyard?

Test your soil texture

http://projectzenstead.com/index.php/2016/03/08/how-to-test-soil-texture/ https://www.todayshomeowner.com/diy-soil-texture-test-for-your-yard/

What About MY Backyard?

Fertilizer vs. Soil Amendment?

First it helps to know the difference between soil amendments and fertilizer.

Fertilizer	Soil Amendment
Affects the plant through the growth stage through nutrients	Indirectly affects the plant by improving soil physical and chemical properties
Bone meal	Manure
Fish Emulsion	Compost
Miracle Grow	Worm Castings
Kelp meal	Leaves and grass clippings
Cottonseed meal	Peat moss
Etc.	Etc.

How Much Amendment?

Never Enough

- It takes years
- Replace 1-3 times a year
- 6 inch layer is a good start example: 6 inches over 100 Sq ft = 25 two cubic ft. bags or 1.85 cubic yards Coverage calculator:

http://www.harvestpower.com/products/landscape-calculator/

Type of soil	Amount of composted organic material
Limited organic matter	4-6 inches each planting season
Lots of organic matter	1-3 inches each planting season

How Can I Get Some Organic Material?

Sources

- Make your own compost •
- Garden supply and landscape stores (bagged or bulk) •
- Municipal green waste compost (the dump) •
- Horse stables •
- Worm castings
- Coffee grounds

Materials for your compost pile

- Get some chickens or rabbits
- Compostable produce scraps at grocery stores •
- Spent brewers grain at micro breweries
- Organic materials exchange • http://www.omexchange.org/listings

What About MY Backyard?

Test your soil chemistry

Find out your starting point:

- N=Nitrogen
- P=Phosphorus
- K=Potassium
- pH

How do I know?

- Buy a soil test kit
- Get your soil tested by a lab
- Best guess

How Much to Fertilize and When

It depends ...

- Your starting point (soil test result)
- Type of plant
- Time of year
- Type of fertilizer
- Plant's stage of life
- Symptoms of deficiency (see Appendix)

Trade off Time – Money - Effort

The Blitz

1 week plan

In a Hurry, got money

- Get truckload of compost delivered
- Hire people to dig it in
- Fertilize and plant

The Long View

6 month plan

Got time, got muscle

- Clear soil surface
- Rough up soil
- Plant a **cover crop**, water & let it grow
- Chop it down, turn it under, wait 3 weeks
- Plant

Trade off Time – Money - Effort

The Sweat Equity

1 month plan

- Got NO money but some muscle
- Collect free, collected
 materials
- Incorporate into soil
- Wait 3 weeks
- plant

The Low Effort

No-Dig plans

- Lasagna garden
 <u>https://www.thespruce.com/how-to-</u>
 <u>make-a-lasagna-garden-2539877</u>
- Straw bale garden <u>http://modernfarmer.com/2013/07/s</u> <u>traw-bale-gardening/</u>

Trade off Time – Money - Effort

The Classic Raised Bed

- 1-2 month plan
- Build boxes
- Buy soil
- Plant

Trade off Time – Money - Effort

The Hybrid

Start small with a straw bale or lasagna garden

AND

Plant a cover crop for the next season

Soil Steward Tips

Maintain soil structure

- Cultivate (dig) when soil is moist but NOT soaking wet or bone dry
- Till or turn only when required to incorporate organic material, plant or weed once per season
- Don't compact the soil i.e. walk on it
- Keep soil covered planted, mulched or both
- Add compost every year
- Rotate crops
- Minimize use of chemical herbicides, fungicides, fertilizers

What About MY Backyard?

WIN a Cover Crop Blend!

WIN some Alpaca Manure!

Outside!

Try these ideas things out

- Dig in some cover crops
- Build a lasagna garden bed
- Question and Answer

Remember! You can always address questions to the

Master Gardener Hotline

http://mbmg.ucanr.edu/hotline/ 831.763.8007

APPENDIX

Fun Fact!

At least one soil microbe acts as an anti depressant.

Mycobacterium vaccae

Deficiency Symptoms - N

- General chlorosis.
- Chlorosis progresses from light green to yellow.
- Entire plant becomes yellow under prolonged stress.
- Growth is immediately restricted and plants soon become spindly and drop older leaves.

Deficiency Symptoms - P

- Leaves appear dull, dark green, blue green, or red-purple, especially on the underside, and especially at the midrib and vein.
- Petioles may also exhibit purpling. Restriction in growth may be noticed.

Merlot with advanced P deficiency symptoms.

Deficiency Symptoms - K

- Leaf margins tanned, scorched, or have necrotic spots (may be small black spots *which* later coalesce).
- Margins become brown and cup downward.
- Growth is restricted and die back may occur.
- Mild symptoms appear first on recently matured leaves.

Deficiency Symptoms - Ca

- Growing points usually damaged or dead (die back).
- Margins of leaves developing from the growing point are first to turn brown.

Deficiency Symptoms - Mg

- Marginal chlorosis or chlorotic blotches which later merge.
- Leaves show yellow chlorotic interveinal tissue on some species, reddish purple progressing to necrosis on others.
- Younger leaves affected with continued stress.
- Chlorotic areas may become necrotic, brittle, and curl upward.
- Symptoms usually occur late in the growing season.

Deficiency Symptoms - Cu

- Leaves wilt, and curl become chlorotic, then necrotic.
- Wilting and necrosis are not dominant symptoms.

Deficiency Symptoms - Fe

- Distinct yellow or white areas appear between veins, and veins eventually become chlorotic.
- Symptoms are rare on mature leaves.

Deficiency Symptoms - Mn

- Chlorosis is less marked near veins.
- Some mottling occurs in interveinal areas.
- Chlorotic areas eventually become brown, transparent, or necrotic.
- Symptoms may appear later on older leaves.

Deficiency Symptoms - Zn

- Leaves may be abnormally small and necrotic.
- Internodes are shortened.

Deficiency Symptoms - B

- Young, expanding leaves may be necrotic or distorted followed by death of growing points.
- Internodes may be short, especially at shoot terminals.
- Stems may be rough, cracked, or split along the vascular bundles.

Finnish Seniors Model Organic Materials

