# Development of Sterile Insect Technique for Navel Orangeworm

Houston Wilson | Asst. Coop. Extension Specialist Dept. Entomology, Univ. of California - Riverside

Chuck Burks | Research Entomologist Agricultural Research Service, US Dept. Agriculture

**Reva Scheibner | Staff Research Associate** Dept. Entomology, Univ. of California - Riverside

Sarah Meierotto | Staff Research Associate Dept. Entomology, Univ. of California - Riverside

Joshua Reger | Ph.D. Student Dept. Entomology, Univ. of California - Riverside

Jessica Maccaro | Staff Research Associate Dept. Entomology, Univ. of California - Riverside









SIT for NOW - Background Moth Production/Transportation Process When? Where? How Many?

Lots of moths...

• ~2,000,000 NOW/day

...but also lots of crops.

- 1.2M almonds, 300k pistachio, 250k walnuts
- Plus alternate hosts
- Where to deliver moths? When? How many?
  - Overflooding ratio
  - Delivery method, timing and location
  - Integration with existing IPM tools

Goal = develop a competitive sterile moth, and figure out how to best use it.

# Sterile Insect Technique for NOW Project Project Summary 2018-2023

| 2018                        | 2019 | 2020 | 2021 | 2022 | 2023 |
|-----------------------------|------|------|------|------|------|
| Understandin<br>the Problem | g    |      |      |      |      |

Developing Alternatives

> Field Dispersal and Impacts on Wild NOW

> > Ecological/Economic Scenario Modeling

### Research Summary: 2018-2021 Monitoring Techniques and Assays





#### **Pheromone Traps**

- Synthetic pheromone lure
- Attracts males
- Large trapping radius (captures lots of moths)



#### **Ovibait Traps**

- Pistachio/almond bait
- Attracts mated females
- Smaller trapping radius (captures fewer moths)

### Research Summary: 2018-2021

### **Monitoring Techniques and Assays**



Female calling (emitting pheromone) at night



NOW mating

#### **Mating Tables**

- Sentinel virgin female with wings clipped
- Exposed overnight
- Check at dawn for paired male
- Dissect moths to determine...
  - Male is sterile vs wild
  - Female is mated

#### **Sentinel Females Used**

- Mendota Colony = control moth
  - Can sterile males locate females?
- Phoenix Facility
  - Can sterile females attract wild males?

### Research Summary: 2018-2021

Field Release Sites – <u>Two Small Pistachio/Almond Orchards</u> Grid of Traps and Mating Tables



Pheromone
Ovibait
Mating Table

1-3 acre blocks

# Crop Year 2018 What does moth recapture rate look like?

# Crop Year 2018 Poor Recovery of Sterile Males

**Flight Traps at Kearney** 



**Crop Year 2019** *Poor recovery in 2018 Can males even fly and respond to pheromone?* 

# Crop Year 2019 Why Such Poor Recovery of Males?

#### Can they even fly?

- Flight mill assays
- Do they respond to pheromone?
- Wind tunnel assays



# Tandem NOW on a flight mill

Video courtesy of Joshua Reger, Ph.D. Student Dept. Entomology, UC Riverside

# Crop Year 2019 Evaluating the Phoenix Strain Males Males can fly – but not as well



# Crop Year 2019 Evaluating the Phoenix Strain Males Males do respond to pheromone



# Crop Year 2019 New Release System Provisions Vertical Space Grocery Bags with Paper Tubes





# Crop Year 2020-2021

YES - males fly and respond to pheromone BUT – can they mate in the wild?

ALSO - release system is important SO - can we improve it further?

# Crop Year 2020-2021

YES - males fly and respond to pheromone BUT – can they mate in the wild?

ALSO - release system is important SO - can we improve it further?

# Crop Year 2020-2021 Recovery Improved – But Can They Mate?



# Crop Years 2020-2021 Mass/Sterile Males Can Locate Sentinel Females





χ<sup>2</sup>=21.9, n=524, *P*<0.001

χ<sup>2</sup>=10.6, n=541, *P*<0.01

# Crop Years 2020-2021 Mass/Sterile Females Can Attract Wild Males



χ<sup>2</sup>=44.0, n=1,115, *P*<0.001

# Crop Year 2020-2021

YES - males fly and respond to pheromone BUT – can they mate in the wild?

ALSO - release system is important SO - can we improve it further?

# Crop Year 2020-2021 Primary Focus on Transport/Release Methods

#### **Transport**

#### Shipped via UPS



Driven in refrigerated cooler



Vehicle: M3 Agriculture

#### **Release**



Paper Bag + Tubes



UAV/ Drone

Drone: M3 Agriculture

# Crop Years 2020-2021

#### Transport and Release Does Influence Performance Mass-Rear Moths Only



# Crop Years 2020-2021

#### Mass Rearing Negatively Impacts Field Performance Regardless of Release Device or Transport



χ<sup>2</sup>=352.2, n=40, *P*<0.01

# Crop Year 2021-2022

Improved Recovery from the Airplane How do they disperse in large blocks? Can they impact wild NOW?

Mass-rearing/handling impacts SO - new "MCS" strain

Where should moths be allocated? Ecological-economic scenario modeling

# Crop Year 2021-2022

Improved Recovery from the Airplane How do they disperse in large blocks? Can they impact wild NOW?

Mass-rearing/handling impacts SO - new "MCS" strain

Where should moths be allocated? Ecological-economic scenario modeling

### Crop Years 2021/2022 Dispersal in Large Block Setting - Pistachios Weekly Release with Grid of Traps



### Crop Years 2021/2022 Dispersal in Large Block Setting - Pistachios Weekly Release with Grid of Traps



### Crop Years 2021/2022 Dispersal in Large Block Setting - Pistachios Weekly Release with Grid of Traps



# Crop Years 2021/2022

#### Dispersal in Large Block Setting - Pistachios Most remain in the release area, 10-20% disperse outward



### Crop Years 2021/2022 Impact on Wild Populations – Almonds Weekly Release in Paired Plots



### Crop Years 2021/2022

#### **Impact on Wild Populations - Almonds**

So Far - Inconsistent Impacts on Wild Populations



# Crop Year 2021-2022

Improved Recovery from the Airplane How do they disperse in large blocks? Can they impact wild NOW?

Mass-rearing/handling impacts SO - new "MCS" strain

Where should moths be allocated? Ecological-economic scenario modeling

# Crop Year 2022

#### Comparison of Improved Strain for Mass Rearing 'MCS' Strain Selected for Rearing Conditions





## Crop Year 2022

#### **Comparison of Improved Strain for Mass Rearing** Small Plot Work - So Far Looks Promising...



# Crop Year 2021-2022

Improved Recovery from the Airplane How do they disperse in large blocks? Can they impact wild NOW?

Mass-rearing/handling impacts SO - new "MCS" strain

Where should moths be allocated? Ecological-economic scenario modeling

# Crop Years 2021/2022

#### **Ecologica/Economic Scenario Modeling**

Can we determine if/when/where sterile NOW makes sense?

Models incorporate various features to make them realistic, such as data on the distribution and arrangement of tree nut orchards, pesticide use and tree phenology.



Co-PIs: Dr. Ran Wei (UC Riverside) and Dr. Brittney Goodrich (UC Davis)

# Crop Years 2021/2022

#### **Ecologica/Economic Scenario Modeling**

#### **General Process**



Predefined scenarios include different combinations of management practices.



Scenarios then generate different population curves for NOW in a given region.



Those NOW populations then have differential impacts on crop damage.

| % Domono Boto                 | Alm       | ond      | Pistachio   |             |  |
|-------------------------------|-----------|----------|-------------|-------------|--|
| % Damage Rate                 | Nonpareil | Monterey | 1st-Harvest | 2nd-Harvest |  |
| 1-Pesticide                   | 0.04      | 0.04     | 0.06        | 0.73        |  |
| Sanitation + 1-Pesticide      | 0         | 0.09     | 0.01        | 0.1         |  |
| Sanitation + MD + 1-Pesticide | 0         | 0        | 0           | 0           |  |
| Sanitation + SIT-Low Rate     | 1.35      | 0        | 1.38        | 2.42        |  |
| Sanitation + SIT-High Rate    | 0         | 0        | 0           | 0           |  |



Management efforts and crop damage can then be used to estimate economic costs/benefits under each scenario.

| IPM                         | Percent Damage | IPN | l Cost Per Acre | Rev | enue Per Acre | Net | Benefit Per Acre |
|-----------------------------|----------------|-----|-----------------|-----|---------------|-----|------------------|
| Pesticide                   | 0.04           | \$  | 65.46           | \$  | 3,998.50      | \$  | 3,933.04         |
| Sanitation + Pesticide      | 0              | \$  | 421.00          | \$  | 4,000.10      | \$  | 3,579.10         |
| Sanitation + Pesticide + MD | 0              | \$  | 531.00          | \$  | 4,000.10      | \$  | 3,469.10         |
| Sanitation + Low SIT        | 1.35           | \$  | 355.54          | \$  | 3,902.50      | \$  | 3,546.96         |
| Sanitation + High SIT       | 0              | \$  | 355.54          | \$  | 4,000.10      | \$  | 3,644.56         |

Example Scenarios

- 1. Pesticides Only
- 2. Sanitation + Pesticides
- 3. Sanitation + Mating Disruption (MD) + Pesticides
- 4. Sanitation + SIT at Low Rate
- 5. Sanitation + SIT at High Rate



# Crop Year 2023

Continue evaluation of "MCS" strain Mating tables and large scale dispersal

**Continued focus on large block studies Dispersal and impacts on wild NOW** 

Where should moths be allocated? Ecological-economic scenario modeling – Y2

# Sterile Insect Technique for NOW Project Project Summary 2018-2023

| 2018                        | 2019 | 2020 | 2021 | 2022 | 2023 |
|-----------------------------|------|------|------|------|------|
| Understandin<br>the Problem | g    |      |      |      |      |

Developing Alternatives

> Field Dispersal and Impacts on Wild NOW

> > Ecological/Economic Scenario Modeling

# **Thank You!**

Houston Wilson Houston.Wilson@ucr.edu http://treecrops.ucr.edu/

#### Acknowledgements:

[Collaborators] Chuck Burks, Joel Siegel (USDA ARS), Davis/Claus/Andress (APHIS), Moses-Gonzales (M3 Agriculture)

[Lab Assistants] Sarah Meierotto, Reva Scheibner, Jessica Maccaro, Javi Herrera, Tyler Colombero, Victoria Morelos, German Camacho, Lino Salinas, Anisabel Guzman, Hector Jacome-Saenz, Celeste Lara [Postdocs / Grad Students] Dylan Tussey, Jean Liu, Nathalie Baena Bejarano, Kadie Britt, Joshua Reger [Funding] <u>CA Pistachio Research Board</u> + Almond Board of CA + APHIS PPA 7721 + CDFA SCBG







#### UCRIVERSITY OF CALIFORNIA USDA





