Measuring and Monitoring Community and Ecosystem Resilience

Sara Ludwick

UC CLIMATE

Callie Shiang

Dr. Ryan Meyer

UC Davis

Annumity 7

Overview

- Analyze an existing community resilience assessment tool
- Improve the tool to meet our needs using new metrics
- Identify community and citizen science opportunities to support the curriculum

What is Community and Citizen Science?

Public involvement in scientific research!

Harnessing expertise of communitymembers for better science and participant benefits

Why Measure Resilience?

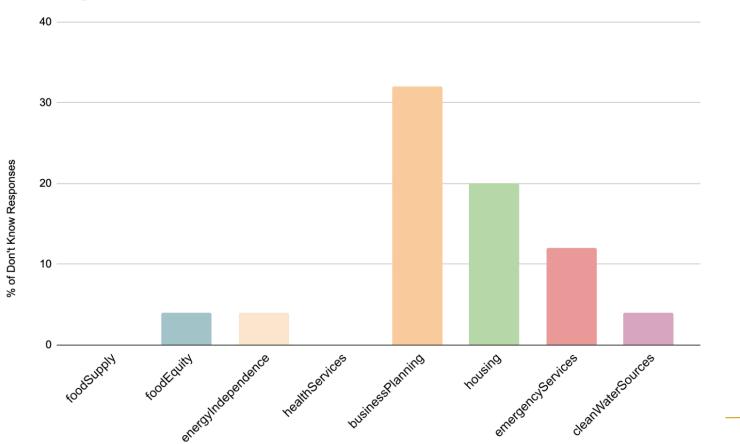
- 1.Increase education and interventions
- 2. Identify how targeted efforts (like Climate Stewards!) might be affecting a community
- 3.Learn about resilience in a local area
- 4.Do Community and Citizen Science!

@UCDavisCCS

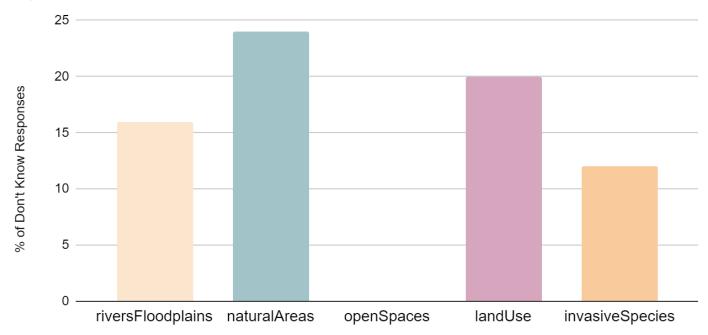
Community Resilience Assessment Tool

- Basic Needs & Services
- Environment & Natural Systems
- Physical Infrastructure
- Community Connections& Capacity

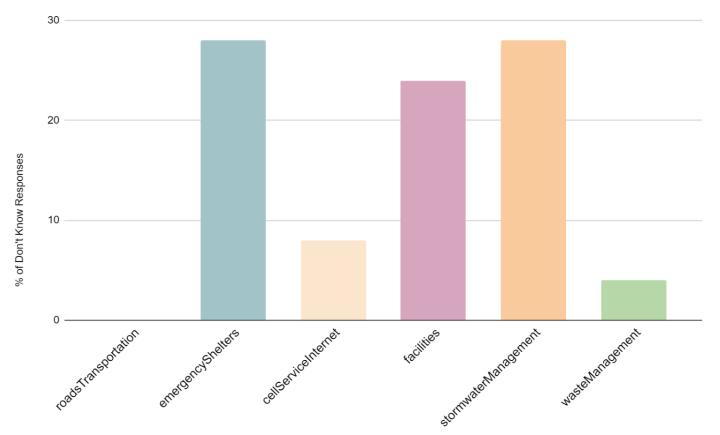
	BASIC NEEDS & SERVICES
	Meeting baseline physical needs for surviving and thriving communities
Food Supply (1=	= not very resilient, 5= very resilient) *
1 3	ourced locally; many residents grow and store food; thriving community gardens and farms; region d to sustain all residents; produced with methods that cultivate healthy soils; food systems actively e change
_	3 4 5 Not Sure
01 02) 3 O A O S O NOCSULE
- 1- 1- 1- 1-	
High level of food s	: not very resilient, 5= very resilient) * security at neighborhood level, in wider community, and in region; robust dietary and culturally ptions; local, healthy food is accessible and affordable for all
$\bigcirc 1$ $\bigcirc 2$ \bigcirc	3
0.02) 5 0 1 0 5 0 1.00 5 0.00


Community Resilience Assessment Tool

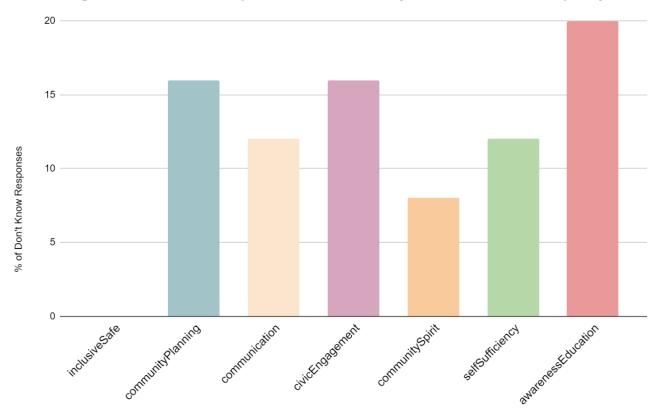
- Goals:
 - Baseline assessments
 - How participants were thinking about resilience
 - Make suggestions


- 12 Partner Organizations
 - Instructor assessments, 2 organizations
 - Participant assessments, 8 organizations

Percentage of Don't Know Responses for Basic Needs and Services



Percentage of Don't Know Responses for Environment and Natural Systems



Percentage of Don't Know Responses for Physical Infrastructure

Percentage of Don't Know Responses for Community Connections and Capacity

Challenges with this tool

Community variability

- "Many of my rankings in this category could be moved up or down 1 slot. In part this is because the "local" area is large (ED County; American River and Cosumnes River watersheds) and there is a lot of variability within each topic."
 - participant from American River Conservancy

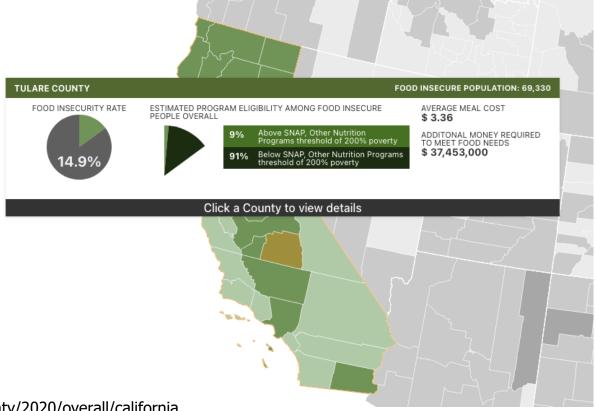
Challenges with this tool

Representation

- "i'm not sure on some of these. i'm also very concerned that MUCH of the frontline communities are not represented in these responses. As a white, cis-gender female my experience of resilience and services locally is VASTLY different than indigenous/bipoc community members, but is not being represented for analysis here."
 - participant from Community Environmental Council

Moving Forward

- Keeping this version as an instructional tool to get participants thinking about climate resilience (though not Community and Citizen Science)
- Developing a new tool that has instructors assess a few key indicators of climate resilience in attempt to track changes in a site over time
- Indicators are based on:
 - Data availability and access
 - Relevance to climate change in California



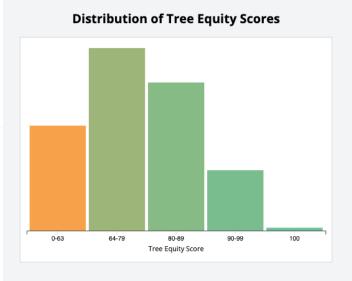
Examples of Key Indicators the New Tool will Capture

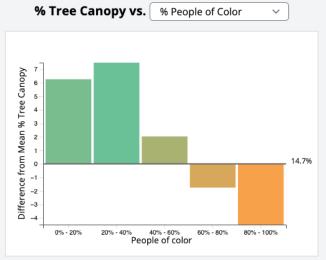
- Extreme heat health events
- Food equity
- Energy reliability
- Tree equity scores
- Fire Safe Councils
- Adaptation planning capacity

Food Equity

https://map.feedingamerica.org/county/2020/overall/california

Tree Equity Score




MUNICIPALITY

Tree Equity Score

Sacramento

Tree Equity Score: 75

Each bar represents the mean tree canopy % for block groups within the specified range of people of color. The amount above or below the thick horizontal line indicates the difference from the area-wide mean canopy %.

Presence of Fire Safe Councils

Fire Safe Councils within a 10 mile radius of Placerville, CA

cafiresafecouncil.org

Energy Reliability

13. Sacramento Division Performance Assessment

Sacramento Division Performance

Table 21: Sacramento Division Performance

Division/System	Year	SAIDI	SAIFI	MAIFI	CAIDI		
SACRAMENTO	2015	80.1	0.799	1.556	100.3		
SACRAMENTO	2016	83.6	0.944	1.539	88.5		
SACRAMENTO	2017	121.2	1.070	1.708	113.2		
SACRAMENTO	2018	101.0	1.021	1.825	98.9		
SACRAMENTO	2019	98.9	0.866	1.574	114.3		
5-Year Average	15-19 Avg	97.0	0.940	1.640	103.1		
SACRAMENTO	2020	173.6	1.350	1.499	128.6		
	%Difference	79.1%	43.6%	-8.6%	24.7%		

State of Climate Adaptation Plans

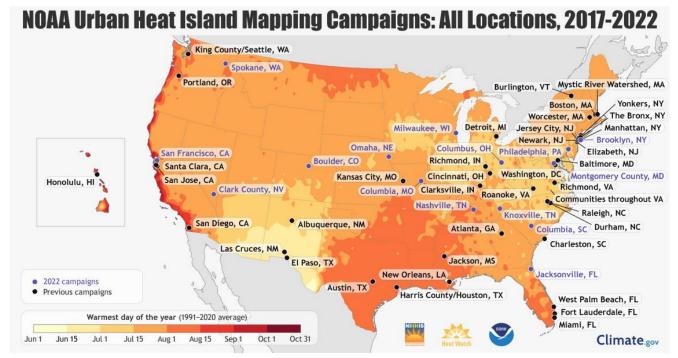
The ResilientCA Adaptation Planning Map (RAP-Map)

Legend

- Unknown/uncategorized
- Acknowledges climate risk or adaptation efforts
- Completed vulnerability assessment
- Completed adaptation policy development
- Completed vulnerability assessment and adaptation policy development
- Updated and adopted Safety Element

Instructor Validation is Key

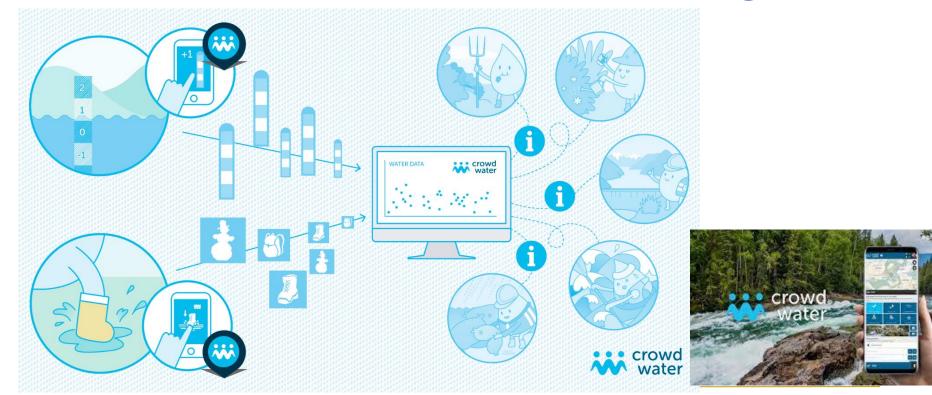
- Instructors will...
 - Validate or explain the relevance of these scores for their service areas:
 - Are they meaningful metrics of resilience?
 - Could the course address any needs or opportunities identified by these metrics?



A Role for Community and Citizen Science

- Criteria:
 - Existing projects that participants could readily engage with
 - precipitation changes,
 - extreme heat,
 - wildfire and smoke,
 - and climate justice.
- 8 projects met our criteria

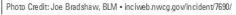
Participatory Science for Extreme Heat



NOAA Urban Heat Island Mapping Campaigns: All Locations, 2017-2022

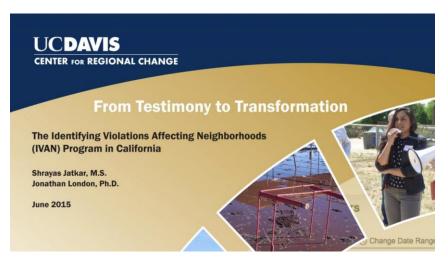
Citizen Science for Floods and Droughts

Citizen Science for Wildfires


LET'S TACKLE THE SCIENCE TO GET AHEAD OF WILDFIRES.

How to Help: If you see ash, submit a picture to #Ashfall on citizensciencetahoe.app

Or post picture on Twitter using #Ashfall


Include location and a reference object for size. Take the photo straight on, not at an angle.

Climate Justice

Some Key Takeaways

Measuring climate resilience is hard! It is easier to measure impacts

There are more opportunities to engage with science that contributes to our understanding of climate impacts than there are for climate resilience

Public education and community and citizen science can offer valuable opportunities to get people thinking about and acting on resilience in their communities

Contact Information

Sara Ludwick scludwick@ucdavis.edu

Greg Ira gcira@ucanr.com

Ryan Meyer rmmeyer@ucdavis.edu

Sarah-Mae Nelson smanelson@ucanr.com

@UCDavisCCS

Callie Shiang cjshiang@ucdavis.edu

Thank You!

