Brad Hanson
Cooperative Extension Weed Specialist

Weed Management
Why control weeds?

- Compete for water, nutrients, and light with trees
- Interference is especially problematic during establishment years
- Can affect crop management, irrigation, and harvest operations
- Impacts on other pest problems
- Crop quality concerns?
Complex populations

- Rarely just one weed species present
 - Annual vs perennial vs biennial
 - Grass vs sedges vs broadleaf
- Time of emergence
 - Fall vs spring emergence vs year-round
- Reproductive strategy
 - Seed vs vegetative
Factors affecting orchard weeds

- Orchard age and arrangement
 - Shading and space capture
- Irrigation type, timing, and amount
 - Furrow, sprinklers, micros, drip
- Tillage practices
 - Berms, cross-disking, etc.
- Herbicide options
- Orchard access
Integrated weed management

- Using all available strategies to manage weed populations in a manner that is economically and environmentally sound.
 - cultural
 - mechanical
 - chemical
Goals of IWM

- Both short- and long-term goals
 - Prevent or reduce weed spread
 - Delay and/or suppress weed growth
 - Prevent or suppress weed seed production
 - Reduction of weed seed bank in soil
Weed identification

- Unknown weeds cannot be properly managed
 - No technique controls all weed species
 - Not all weeds cause equal damage (thresholds)
 - Species respond differently to control strategies
 - Even variants within a species (i.e. herbicide resistant biotypes)

Weed Research and Info Center
http://wric.ucdavis.edu

Online weed ID tool
A number of weed books are available.
Several available.

I use a set by XID Services
- UC Davis
- WSSA
- WSWS
- others
Online Weed ID Resources

A few online (FREE) resources are available:

UC Davis Weed Research and Information Center
www.wric.ucdavis.edu
Online Weed ID Resources

http://ipm.ucdavis.edu/PMG/menu.weeds.html

The UC Guide to Healthy Lawns

Begin key

Which illustrated characteristic best matches your weed species?

- Broadleaves: Leaves are wide, veins branch out in different directions
- Grasses: Leaves are narrow, arranged in sets of 2, stems are rounded or flattened
- Sedges: Leaves are narrow, arranged in sets of 3, stems are triangular in cross section

Grass ID characteristics
Sedge ID characteristics
Broadleaf ID characteristics
Weed management

- Orchard and vineyard floors divided into two management zones: middles and crop row
 - Zones may have very different strategies
 - Also may differ during the life of the orchard
How do we manage weeds?

- A few broad categories
 - Exclusion/sanitation
 - Cultural
 - Mechanical
 - Biological
 - Chemical
Sanitation

- Weed management should be an ongoing concern
 - Scout and manage in the orchard
 - Manage weeds on field margins and access roads
 - Clean equipment between sites
 - Scout and prevent seed set of “new” problems
Cultural practices

- Irrigation and fertilizer management
- Canopy management
- Cover crops
- Mulches
- Flaming
- Animals
Cover crops
Cover crop issues

ADVANTAGES
- Winter orchard access
- Reduced soil erosion
 - And pesticide and fertilizer runoff
- Addition of OM
- Soil structure and water/root penetration
- Competes with weeds

DISADVANTAGES
- Need to manage 2nd crop
 - More equipment
- Competes for water and nutrients
- Frost concerns
- Vertebrate and insect pests
- Addition of nutrients (N) may be unwanted (vineyard)
Flaming

- Non-chemical
- High fuel cost
- Just need to “heat” not “burn” weeds
- Best on young broadleaf
- No residual control
- Danger of damage to young trees or vines and irrigation systems
Animals can be used to manage vegetation in some cases

- Can work very well ... or very poorly
 - Expensive (own or rent?)
 - Management effort
 - Animal health and welfare limits weed control
 - Can damage trees or vines (buds) if left too long
 - Food safety concerns
Mechanical control

- Tillage / cultivation
- Mowing
- Hand labor

- T&V rows vs middles
 - equipment options and costs
Cultivation

ADVANTAGES

- Non-chemical tactic
- Organic matter additions and nitrogen release
- Reduces competition for water
- Reduces frost potential
- Easy control in middles
- No “resistance”

DISADVANTAGES

- Fuel and time costs
- Trunk and root injury
- Dust
- Erosion
- Compaction
- Can spread seed and fragments
- Weeds near tree difficult
- Effects on tree vigor?
Mowing

- **Advantages.**
 - Suppresses weeds, reduces seed set
 - Orchard access and erosion benefits

- **Disadvantages.**
 - Frost potential
 - Weeds still use water and nutrients
 - Favors low growing and perennial weeds
 - Favors grasses *(advantages or disadvantages?)*
 - Cost of repeat operations (slow and frequent)
Chemical control
CA orchards and vineyard herbicides usually applied to “strips” under the tree/vine row
- 2-20 ft strip, may treat 20-50% of the floor
- Middles managed with mowing, tillage, or less intensive herbicide program
- Often with a “preharvest” broadcast application
Types of herbicides

- Preemergence (PRE)
 - Applied to bare soil and affect germinating seeds and seedlings
 - Provide residual effects (weeks or months)

- Postemergence (POST)
 - “Burn down” treatments applied to the foliage of emerged weeds
 - Can be “contact” or “translocated” materials
 - Some products have residual control, some do not
Factors affecting herbicide choice

- Availability in the crop (registration)
- Weeds to be controlled (weed ID)
- Toxicity and safety (to crop and non-target)
- Soil type and texture
- Cost
Herbicides registered in pistachio

<table>
<thead>
<tr>
<th>Preemergence (PRE)</th>
<th>Postemergence (POST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission</td>
<td>Shark</td>
</tr>
<tr>
<td>Chateau</td>
<td>SelectMax**</td>
</tr>
<tr>
<td>Alion</td>
<td>2,4-D</td>
</tr>
<tr>
<td>Trellis</td>
<td>Diquat**</td>
</tr>
<tr>
<td>Broadworks</td>
<td>Fusilade**</td>
</tr>
<tr>
<td></td>
<td>Glyphosate</td>
</tr>
<tr>
<td></td>
<td>Rely 280</td>
</tr>
<tr>
<td></td>
<td>Sandea</td>
</tr>
<tr>
<td></td>
<td>Gramoxone</td>
</tr>
<tr>
<td></td>
<td>Pelargonic acid</td>
</tr>
<tr>
<td></td>
<td>Venue</td>
</tr>
<tr>
<td></td>
<td>Treevix</td>
</tr>
<tr>
<td></td>
<td>Poast</td>
</tr>
</tbody>
</table>

*Trade names for example only

** Registered in NB pistachio only
CA pistachio herbicide use

<table>
<thead>
<tr>
<th>Rank</th>
<th>Top active ingredients (2015)</th>
<th>2009 treated acreage</th>
<th>2015 treated acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>glyphosate</td>
<td>249,586</td>
<td>323,493</td>
</tr>
<tr>
<td>2</td>
<td>oxyfluorfen (Goal, Goaltender)</td>
<td>113,934</td>
<td>145,193</td>
</tr>
<tr>
<td>3</td>
<td>saflufenacil (Treevix)</td>
<td>--</td>
<td>112,594</td>
</tr>
<tr>
<td>4</td>
<td>paraquat (Gramoxone)</td>
<td>38,610</td>
<td>74,441</td>
</tr>
<tr>
<td>5</td>
<td>pendimethalin (Prowl H2O)</td>
<td>56,048</td>
<td>73,335</td>
</tr>
<tr>
<td>6</td>
<td>glufosinate (Rely)</td>
<td>55,841</td>
<td>59,702</td>
</tr>
<tr>
<td>7</td>
<td>pyraflufen (Venue)</td>
<td>92</td>
<td>40,000</td>
</tr>
<tr>
<td>8</td>
<td>rimsulfuron (Matrix)</td>
<td>14,435</td>
<td>37,577</td>
</tr>
<tr>
<td>9</td>
<td>indaziflam (Alion)</td>
<td>--</td>
<td>36,562</td>
</tr>
<tr>
<td>10</td>
<td>flumioxazin (Chateau)</td>
<td>23,820</td>
<td>26,960</td>
</tr>
<tr>
<td>11</td>
<td>penoxsulam (PindarGT)</td>
<td>--</td>
<td>22,101</td>
</tr>
<tr>
<td>12</td>
<td>carfentrazone (Shark)</td>
<td>12,828</td>
<td>15,478</td>
</tr>
<tr>
<td>13</td>
<td>oryzalin (Surflan, etc)</td>
<td>26,693</td>
<td>10,408</td>
</tr>
<tr>
<td>14</td>
<td>isoxaben (Trellis)</td>
<td>290</td>
<td>10,173</td>
</tr>
</tbody>
</table>

* strip treatments!

301,967 A total (~239k bearing, 69k NB) in 2015
Conventional herbicides

ADVANTAGES
- Can be very cost effective (in some cases)
- Consistent results
- Ease of application (speed)
- Crop safety (generally)
- Erosion benefits (vs tillage)
- Season-long control with some products and combos
- Selectivity can be used to maintain desired cover

DISADVANTAGES
- Cost (in some cases)
- Potential for off-site movement with some products
- Regulations and record keeping
- Herbicide resistance can occur
- Crop injury can occur
- Some market sectors have preference against
Herbicide application considerations

- PRE, POST, or PRE/POST mix?
- Tank mixes
- Weed spectrum controlled
- Surfactants and adjuvants
- Coverage (GPA)
- Timing and weed size
- Sprayer calibration (esp. OC nozzles)
- Nozzle selection
- Litter and debris

- Check current herbicide labels
- Scouting and record keeping
- Training and PPE for handlers and applicators
- Potential for off-site movement?
- Double check calculations and recommendations!
Weed challenges in orchards

- Old favorites:
 - Normal mix of annual grasses and broadleaves
 - Challenge with perennial weeds, especially in new orchards or crops with fewer herbicide options
- New weed problems
 - Most of the “new” issues seem to be related to glyphosate resistance and/or shifting populations to tolerant species
- Changing control options
 - Less tillage, some new herbicides, water issues
Extra challenges in young orchards

- Crop less competitive with weeds
- Greater sensitivity to weed competition
- Greater sensitivity to injury from weed control tactics
- Fewer herbicides registered on new plantings
Orchard weed management

- **Weed ID**
 - Understand the problem and biology

- **Use integrated management tactics**
 - Cultural and mechanical approaches
 - Chemical tactics
 - Right herbicide, right target, right time
 - Resistance management considerations
 - Environmental impacts
 - VOC, surface water, ground water
Manage “your” weeds

- Weed management is an annual concern and production cost that must be considered in a local context.
- No “one size fits all” solution for all orchards - integrated weed management requires systemic and long-term thinking.
T&V herbicide registrations

| Herbicide-Common Name | Site of Action Group¹ | Almond | Pear | Pecan | Peach | Walnut | Apple | Bitter Peach | Cherry | Blueberry | Strawberry | Greenhouse | Brassica | Annual | Circles | Date | Fig | Grape | Kiwi | Date | Durian | Peanut | Plant | Pome | Grape | Date | Date | Date |
|-----------------------|------------------------|--------|------|-------|-------|--------|------|-------------|--------|------------|------------|------------|---------|---------|--------|--------|------|-------|-------|------|-------|--------|-------|-------|-----|------|------|-----|------|
| diclofop (Cassava) | L/20 | N | N | N | N | N | R | N | N | N | N | N | N | N | N | N | N | N | N |
| diuron (Kamer, Diuron) | C2/7 | N | R | N | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| EPTC (Eptam) | N/3 | R | N | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| flazasulfuron (Mezam) | B/3 | R | N | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| fluomaxat (Chateau) | E/14 | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| indoctrafix (Alion) | L/19 | R | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N |
| isoxaben (Teleto) | L/23 | N | N | N | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| mesotrione (Bicyl) | F2/16 | N | N | N | N | N | R | N | N | N | N | N | N | N | N | N | N | N | N |
| napropamide (Denmo) | K5/15 | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| norflurazon (Colais) | A/15 | R | N | N | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| oryzalin (Surplus) | K1/3 | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| oxyfluorfen (Goal) | E/14 | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| pendimethalin (ProwlH2O) | K1/3 | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| penoxsulam (Penk oxide) | B/15 | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| pronamide (Kerb) | K1/3 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| rimsulfuron (Matrix) | B/2 | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| sulfentrazone (Teazle) | E/14 | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| simazine (Prime, Caliber 90) | C1/5 | R | R | N | N | N | R | N | R | N | R | N | N | N | N | N | N | N | N |
| trifluralin (Treflan) | K1/3 | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| carfentrazone (Tark) | E/14 | R | R | R | R | R | R | R | R | R | R | R | R | N | R | R | R | N | R |
| clethodim (SelectMax) | A/1 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| 2,4-D (Clean-crop, Orchard Master) | C/4 | R | R | R | R | R | R | R | R | R | R | R | R | N | R | R | R | N | R |
| diquat (Diquat) | D/22 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| fluazifop-p-butyl (Fastact) | A/1 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| glyphosate (Roundup) | G/22 | R | R | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N |
| glufosinate (Kia 280) | H/40 | R | R | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N |
| halosulfuron (sandee) | B/2 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| paraquat (Gramoxone) | D/22 | R | R | R | R | R | R | R | R | R | R | R | R | N | R | R | R | N | R |
| pelargonic acid (Systam) | NC² | R | R | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N |
| pyrfluafur (Venue) | E/14 | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| saflufenacet (Trevis) | E/14 | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| sethoxydim (Post) | A/1 | R | R | R | R | R | N | N | N | N | N | N | N | N | N | N | N | N | N |

Notes: R = Registered, N = Not registered, NB = non bearing. This chart is intended as a general guide only. Always consult a current label before using any herbicide as labels change frequently and often contain special restrictions regarding use of a company’s product.

¹ Herbicide site of action designations are according to the Heribicide Resistance Action Committee (letters) and the Weed Science Society of America (number) systems. NC = no accepted site of action classification; these contact herbicides are general membrane-disruptors.

Updated annually. Available online - easiest way is to find it is on the UC Weed Science blog.
Brad Hanson
bhanson@ucdavis.edu
530 752 8115
http://hanson.ucdavis.edu/

UC Davis Weed Research and Information Center
http://wric.ucdavis.edu/
http://ucanr.org/blogs/UCDWeedScience/
@UCWeedScience on Twitter

UC Davis Statewide Integrated Pest Management Program
http://www.ipm.ucdavis.edu/