PLFA Interpretation

Ellie Andrews, UCCE

Explanations of functional significance of PLFA response variables in relation to hull/shell amendments and reduced soil disturbance (Ward Laboratories, Inc., Kearney Nebraska).

Response Variable	Significance and Functions
Total microbial biomass	Does the treatment create conditions and resources
	that lead to more microbes? Total microbial biomass
	indicates to what degree soil can generally support
	microbial life and biomass production. Treatments that
	supply carbon (and nitrogen) are more likely to
	increase total microbial biomass.
Fungi:bacteria ratio	Bacteria tend to dominate systems with lower organic
	residues, dry conditions, or after soil disturbances.
	Fungal-dominated communities tend to be more
	resilient to environmental stressors. Fungi tend to be
	considered good soil health indicators. Lower
	disturbance and increased organic residues tend to
	promote fungi.
Predator:prey ratio	This represents protozoa:bacteria. As protozoa feed on
	bacteria, they release nutrients, especially nitrogen.
	The higher the ratio, the more active the community
	where base level nutrients are great enough to support
	higher trophic levels.
Gram (+):gram (-) ratio	Higher gram(+) levels are common when the bacterial
	community is stressed or coming out of dormancy.
	Since they can form spores, they survive better under
	environmental stressors such as drought or extreme
	temperatures. Higher gram(-) levels may be due to
	anaerobic conditions or other stressors. The soil
	bacterial community tends to become more balanced
	(1.0-2.0 ratio) as soil conditions become more
	favorable during the growing season. Gram(+) bacteria
	have many-layered thick cell walls, while gram(-) have
	thinner cell walls. This ratio can help indicate relative
	carbon availability for soil bacteria: gram(-) are more
	dependent on simple C compounds from plants, while

	gram(+) are more dependent on complex C compounds in organic soils.
Actinomycetes (bacteria)	Gram(+) bacteria that cycle organic matter and decompose complex mixtures of polymers such as cellulose and hemicellulose. They resemble fungi because they have long branching filaments (smaller than fungi), but they are bacteria. Some can fix nitrogen on legumes.
Rhizobia (bacteria)	Gram(-) bacteria that form root nodules on legumes and fix nitrogen in symbiosis with plants.
Arbuscular mycorrhizae (fungi)	Plant symbiont that enhances nutrient and water uptake and can increase plant stress tolerance.
Saprophytes (fungi)	Decomposers that drive nutrient cycling, availability, and CO ₂ flux. They provide a "powerful cocktail" of lignocellulolytic enzymes that can deconstruct complex C compounds (Crowther et al. 2012). They transfer nutrients through hyphae.
Protozoa	The presence of protozoa indicates sufficient base level nutrients to support higher trophic levels beyond bacteria.
Undifferentiated	Most soil microbes still await identification.
Saturated:unsaturated ratio	Reflects how bacteria may be altering their membranes under environmental stressors to maintain optimal fluidity and waste transport, so higher saturated fatty acids may indicate a more well-adapted community to present environmental conditions (temperature and moisture). A higher ratio means a healthier and more stable bacterial community.
Monounsaturated: polyunsaturated ratio	Higher ratio indicates less stress. Lower ratio indicates higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).