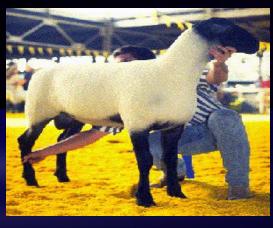
Annual Rangeland Sheep Production & Management

December 12, 2002

John M. Harper
UCCE Livestock & Natural Resources Advisor

California's Sheep Industry


- 3rd in total head behind Wyoming & Texas
- 800K head 2002 \$75 million
 - 370K stock sheep
 - 430K for market >\$53 million value
- Top 7 Counties \$ value 1997
 - Kern, Solano, Riverside,Sonoma, Fresno, Tulare, &San Joaquin

Downward Trends

- 2002 US inventory 6.69 million head
- Down 4% from 2001 and 5% below two years ago
- Inventory trended down since peaking at 56.2 million head in 1942
- Average price for lamb \$67.30/cwt (CA)
- Average price for sheep \$30.20/cwt (CA)
- Shorn wool down 7% in 2001 @ 43 million lbs from 2000
- Average price for wool 36¢ per lb (US)
- California following similar trends

Typical Rangeland Sheep Operation

Blackface Ram X Whiteface Ewes

Sheep Production Year

- May to July marketing
- Weaned 60 to 120 days
- Gestation ~148 days: Jan. & Feb.
- Anestrous Spring & Summer
 - Short day breeders
 - Highest fertility 10 hr day
- Breed in September/October
- Flushing 2 wks prior & 3 wks during breeding season
- Estrus 24-36 hrs; cycle ~17 days
- 70% fetal growth last 6 weeks of gestation
 - Singles vs. twins influence requirements
- First 4-8 wks lactation critical

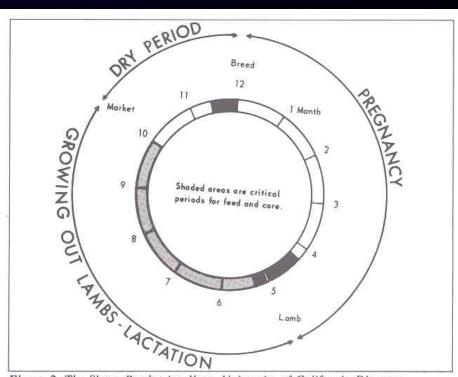


Figure 2. The Sheep Production Year. University of California Diagram

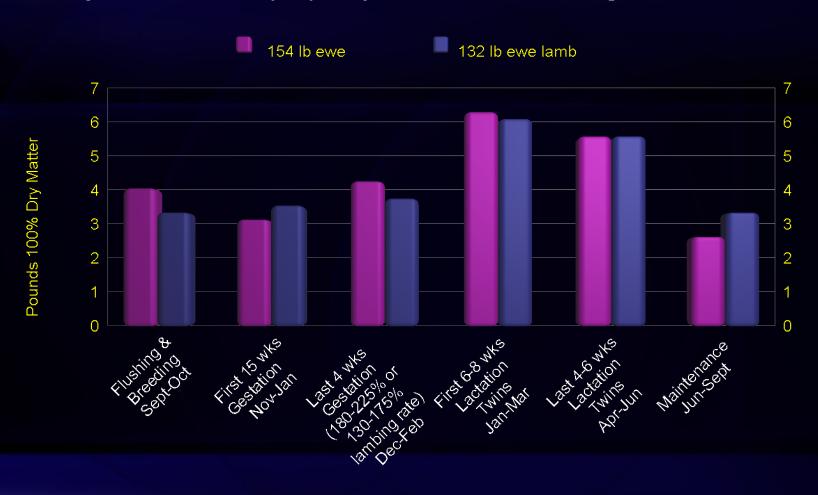
Production Year Nutrition and Forage Quantity and Quality

- Nutrition depends on:
 - Weight or condition and age of ewe
 - Heavy weight animals require more
 - Poor condition animals require more
 - Young animals require more 20% FHP
 - Expected lambing rate of ewe
 - Ewes producing twins require more
 - Production stage of ewe
 - Maintenance, flushing, first 15 wks gestation, last 4 wks of gestation, first 6-8 wks of lactation and last 4 wks of lactation
 - Climate and exercise 40% & 10-100%
 - Quantity and moisture content of forage
 - High moisture affects milk production and lamb growth
 - Quality of forage available

Forage Quantity

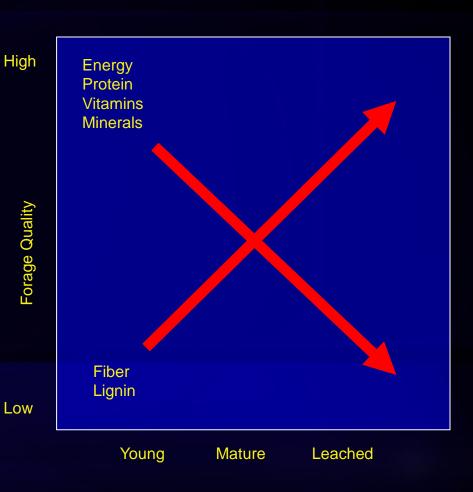
- Varies by season and year
- Depends on:
 - Precipitation & Temperature
 - Controls 4 phases
 - Break of season, winter growth, rapid spring growth and peak forage production
 - Soil characteristics
 - Soil type Clay vs. light texture soils
 - Fertility Nitrogen, Phosphorous & Sulfur
 - Soil pH affects legume species 4.5 high rain to 8.5 low rain
 - Plant residue
 - RDM influences as mulch germination and soil organic matter
 - Species composition affected

Influence of normal weather variations on timing of seasonal dry matter (DM) forage productivity in California's annual grassland ecosystem (George et. al. 2001)

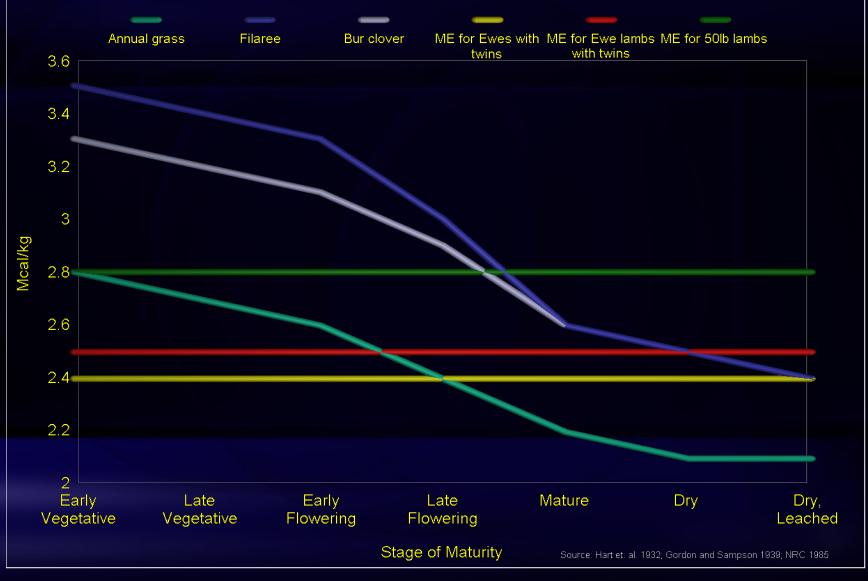

Weather pattern	Break of season date	Onset of winter growth		Onset of rapid spring growth		Peak standing crop	
		Date	DM (lb/ac)	Date	DM (lb/ac)	Date	DM (lb/ac)
Ave. fall, winter, and spring	Oct 23	Nov 7	600*	Feb 1	700†	May 1	2000‡
Warm, wet fall, average winter and spring	Oct 1	Nov 7	1000	Feb 1	1100	May 1	3000
Cold, wet fall, average winter and spring	Oct 23	Oct 23		Feb 1	300	May 1	1000
Dry fall, average winter and spring	Nov 15	Nov 15		Feb 1	300	May 1	1000
Ave. fall, cold winter, average spring	Oct 23	Nov 7	600	Feb 1	300	May 1	1500
Ave. fall, mild winter, average spring	Oct 23	Nov 7	600	Feb 1	1000	May 1	3000
Ave. fall, short winter, early spring	Oct 23	Nov 7	600	Jan 15	700	May 1	3000
Ave. fall, long winter, late spring	Oct 23	Nov 7	600	Apr 1	700	May 1	1500

^{*}Forage production from break of season to onset of winter growth (Oct 23-Nov 7 in this example).

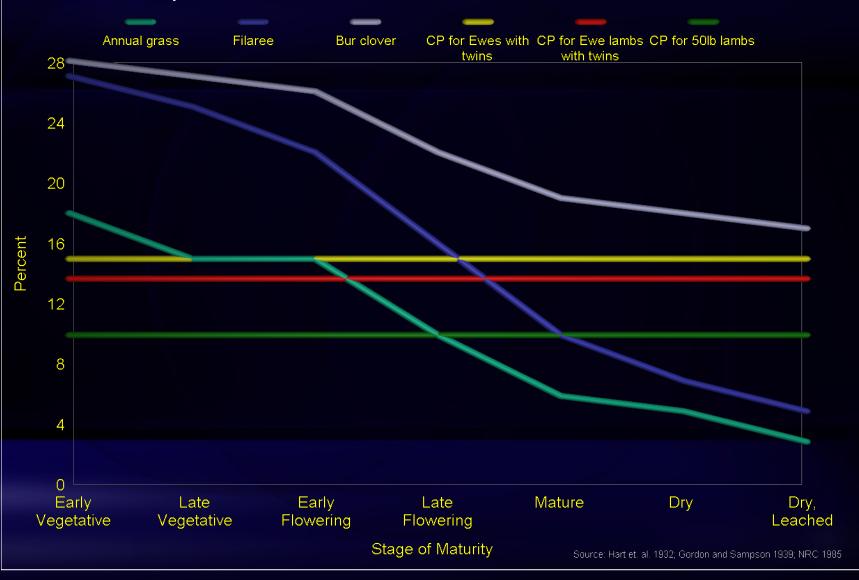
[†]Forage production from break of season to onset of rapid spring growth (Oct 23-Feb 1 in this example).

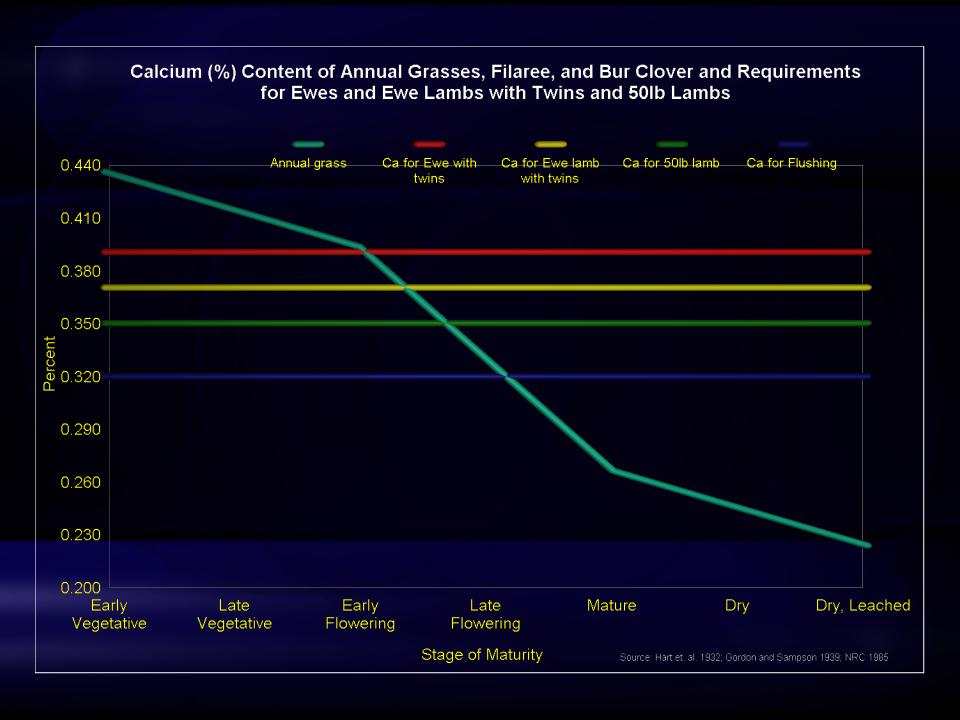

[‡]Forage production from break of season to peak standing crop (Oct 23-May 1 in this example).

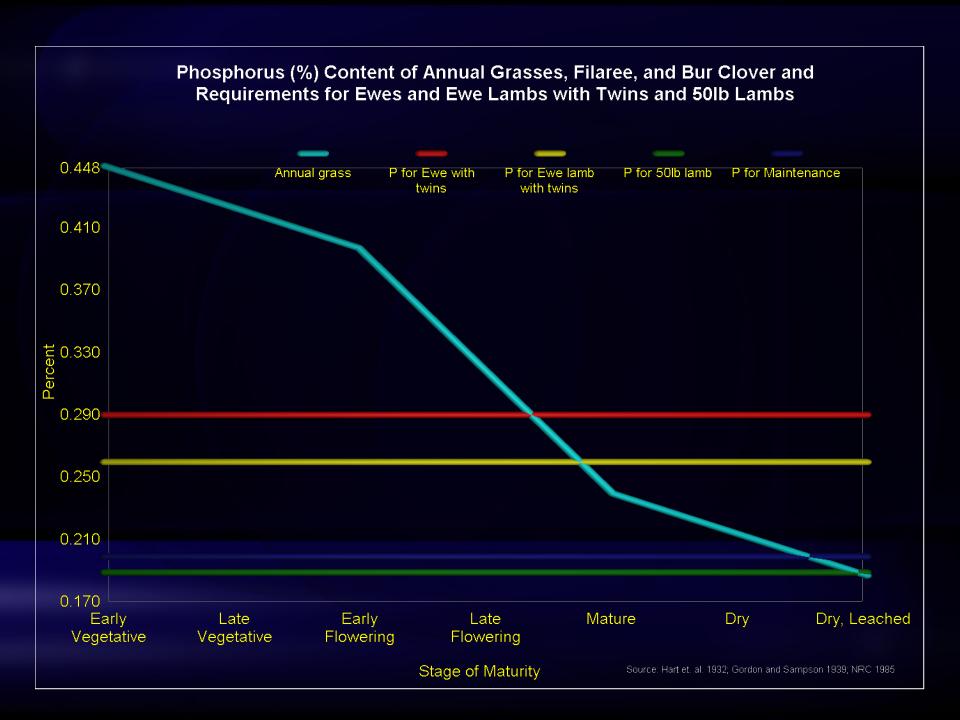
Dry Matter/Animal (lbs) Required At Different Stages of Production



Forage Quality


- Depends on:
 - Plant species, season, location & range improvement practices
 - Stage of growth
- 5 nutrients of primary concern:
 - Energy, protein,
 calcium,
 phosphorous and
 vitamin A





- Magnesium Deficiency Grass Tetany
 - Nursing ewes 4-5 weeks after lambing
 - Grass is high in N and K, low in Mg
 - Serum Mg levels < 1 mg/100 ml severe
 - Serum Mg levels > 1 but < 1.5 mg/100 ml mild
 - Plant protein supplements (0.28 to 0.62% Mg)

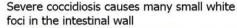
- Selenium/vitamin E Deficiency
 - White muscle disease < 0.2 mg/kg diet DM
 - One or both nutrients lacking
 - Added in feed or mineral mix not to exceed 0.7mg/head/day

- Pregnancy Toxemia ketosis or twin lamb disease
 - Pregnant ewes near term
 - Caused by diet deficient in energy
 - Reduced rumen capacity
 - Ewes over fat in early pregnancy
 - Usually fatal in 1 to 7 days
 - Treatment intravenous glucose and oral glycerin or propylene glycol at 4 to 8 oz daily

- Foot rot
- Interaction of *Bacteriodies* nosdosus and Fusobacterium necrophorum
 - If B. nosdosus not present no foot rot
 - 20 serotypes present in US
- Trim, 10% zinc or copper sulfate baths, soaks, dry chemicals, topicals, dry pens

Note the maggots between the toes

Prolonged soaks better than a quick dash through


- Parasitic diseases
 - Round worms
 - Flat worms
 - Liver flukes
 - Coccidiosis
 - External parasites

- Poisonous plants –
 rare
- Copper poisoning
- Bluetongue < 5% loss w/ 90% infected
- CaseousLymphandenitis –boils
- Sore mouth

California Predation

1999 NASS, USDA

- Coyotes
 - 5000 Sheep, 6500 lambs 75.6%
- Dogs
 - 3000 Sheep, 1000 lambs 11.6%
- Mountain Lions
 - 600 Sheep, 700 lambs 8.1%
- Bobcats
 - 200 lambs 2.3%
- All other animals
 - 200 Sheep 2.2%

California Predation

1999 NASS, USDA

- Sheep value lost \$936,000
- Lamb value lost \$387,000
- Total value lost \$1,323,000
- Non-lethal methods used
 - Fencing 69.1%
 - Guard dogs 21.6%
 - Llamas 12.4%
 - Donkeys -5.2%
 - Lamb shed 56.1%
 - Herding 8.4%
 - Night penning 54%
 - Fright tactics 7.3%
 - Other -11.5%

Questions?

