Slow Sand Filters

Remove *Phytophthora* and TMV from captured runoff

Lorence R. Oki, Ph.D.

Department of Plant Sciences
University of California

California Nursery Conference Watsonville, CA October 25, 2016

Slow Sand Filtration

- What is slow sand filtration?
- System design and operation
- Research results

What is Slow Sand Filtration?

Sand Filters

- Rapid sand filtration
- Slow sand filtration

What is Slow Sand Filtration?

Rapid sand filtration

- Coarse sand (>1mm)
- Removes larger particles only
- Does not remove pathogens
- Does not remove pollutants
- **2-20** gpm/ft²
- Low maintenance

What is Slow Sand Filtration?

Slow sand filtration

- Removes pathogens
- Removes many pollutants
- Low maintenance
- Slow flow rates
 - 0.06-0.2 gpm/ft² (33-100× slower)
 - 12' dia tank can treat 10,000 gpd

Mechanism

- "Schmutzdecke"Where most treatment occurs
 - A community of microorganisms
 - Sand bed surface to 6 inches below
- Organisms that have been identified:
 - algae, bacteria, diatoms, and zooplankton
- Mechanisms for removal are not fully understood
- Particulate removal before filtration

Capabilities

Can remove

- Pathogens
- Nutrients
- Chemical pollutants

Specifications

- Uniform particle size
 - 30-60 mesh (0.425-0.3mm)
 - Uniformity Coefficient (UC)<3</p>
- Round, not sharp
- 1m water head over sand
- Sand must stay submerged
- Sand surface must not be disturbed
- Flow control
- Recommend 1m sand depth
- Recommend at least two filters

System Design

Installations

Berylwood Tree Farm, Somis

Installations

- 850 ft² surface
 - 33 ft dia.
- 60,000 gpd
- Treated storage
 - 132,000 gal
- Untreated storage
 - 1,720,000 gal

Installations

350,000 gpd ~4,440 sq.ft

Supernatant water

Filter surface (sand)

Underdrain system (lowest level)

From: Sabine Werres, Federal Biological Research Center for Agriculture and Forestry, Braunschweig, Germany

Experimental Design

Flow rates and time-to-treatment

- Generate and capture irrigation runoff
- Inoculate treatment water
 - Phytophthora capsici
- Collect water samples
 - Pretreatment
 - From within sand bed
 - Post treatment
- Analyze for P. capsici

SSF Studies

Treatment Performance

Pathogen switch

And simulated pump failure

Pathogen switch

And simulated pump failure

- Phytophthora always removed
- Could not remove Fusarium
 - □ It is possible with "priming"

Virus removal

- Purified TMV added to columns
- Collected water samples weekly
- Testing via
 - ELISA
 - bioassay
 - Leaf- N. glutinosa, C. quinoa
 - Whole plant- N. tabacum, N. benthamiana
- Required 6-9 weeks to achieve removal

Virus removal, bioassay results

	Column 2	Column 3	Column 4
TIME	N.b./N.t.	N.b./N.t.	N.b./N.t.
-0	-/-	-/-	-/-
24 hrs	+/+	+/+	+/+

← Before TMV addition

Samples from below sand bed

Systemic hosts

Nicotiana benthamiana (N.b.)

and N. tabacum (N.t.)

Current and future work

Conclusions

Biological treatment systems:

- Require little or no inputs
 - Contrast with energy (UV irradiation) or chemical-based (chlorination) methods
- Can remove pathogens, chemical pollutants, and nutrients
- Low flow rates means space is required to hold large volumes of water

