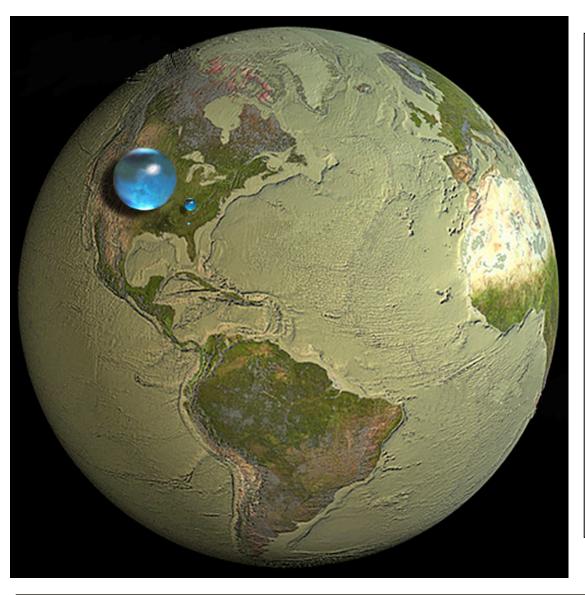

Considerations on the quality & management of alternative irrigation water sources


Raul I. Cabrera
Rutgers University

Water: A limited and limiting resource

Less than 1% of all water on planet is fresh water fit for most animal and plant use.

Large drop= ALL water on planet; 860 mile dia. ~333 million mile³.

Medium drop= Liquid fresh water; 170 mile dia. (0.77%)

Small drop= River and lake water; 35 mile dia. (0.01%).

Earth's diameter is 7,926 miles.

The shallowness of the oceans is clearly evident.

Credits: H. Perlman (USGS); illustration by J. Cook (Woods Hole Oceanographic Inst.). Data from: I. Shiklomanov. 1993. World fresh water resources. In: P.H. Gleick (ed.), Water in Crisis: A Guide to the World's Fresh Water Resources, Oxford Univ. Press, New York.

Need for alternative irrigation water sources

- Availability of high-quality water supplies endangered by climate change (drought) and stiff competition for pressing human uses and activities.
- Ornamental plant (nursery, greenhouse, sod) production uses large water volumes and high application rates (>80" per year are common).
- Landscape irrigation is the largest user of water in urban areas, accounting for ≥50% of the total residential potable water use in many SW-USA cities.

Dealing with limited supplies of good-quality water and alternative water sources

- ✓ Use the right plants for the site (climate, soil & rain)
- ✓ Use the right water for the right use (edible vs ornamental)
- ✓ **Use BMPs** (e.g. OM, mulching, efficient irrigation equip. & methods)
- ✓ Alternative water sources (quality issues!)
 - Agricultural tailwater/Recycled water
 - Naturally saline/brackish water
 - Municipal reclaimed water
 - Rainwater & stormwater
 - ➤ A/C Condensates
 - Residential Graywater

From: Cabrera et al., 2018 (HortTechnology 28(4): In Press)

climate, water quantity & quality)

Irrigation Water Quality – Horticultural Considerations

- ➤ Understanding water quality is imperative for successful production and management of quality ornamental plants/crops.
- ➤ It is the most important factor that dictates site selection, trees and plants to grow, irrigation methods, fertilization programs and their management.

Photos: R.I. Cabrera

pH - alkalinity issues

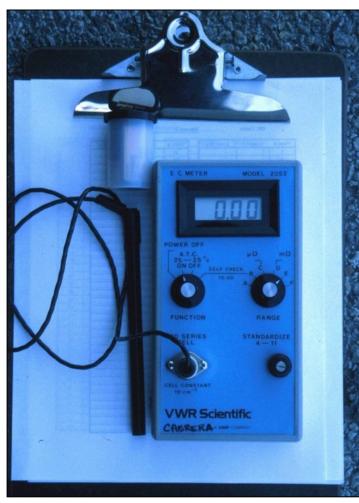
(pH >7 and alkalinity >150 mg/L)

Salinity stress (components)

All ions in solution contribute to overall <u>osmotic effect (EC>1 dS/m)</u>, but Na, Cl (>70 ppm; B>1 ppm) most commonly cause <u>specific toxicity effects</u>.

Osmotic stress: makes plant water uptake difficult to impossible

Nutrient imbalances

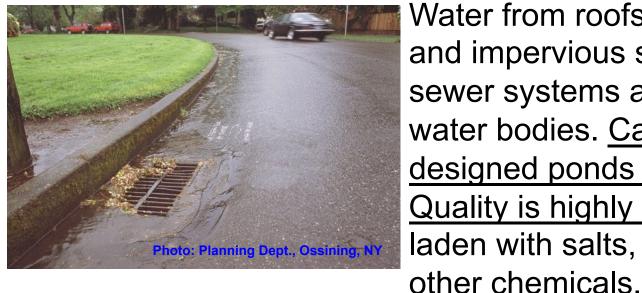

At a minimum, monitor pH & EC routinely in all growing operations

(no excuses)

Use quality meters – & calibrate them!

Irrigation management depending on water source

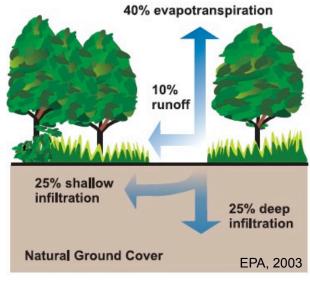
CRITERIA	Good Quality Source		
Quality Tracking: Frequently (pH/Alk; EC, Na, Cl, B) Continuously	✓ (Groundwater, surface)✓ (Surface, groundwater)	 Preferred	At least Preferred
pH/Alkalinity Adjustment	Rarely	Frequently to Continuously	As needed
Irrigation Method: Overhead Microsprinkler/Spray-stake/Spitter Bubbler, Drip	Yes (Least efficient) Yes (Efficient) Yes (Most efficient)	NO Yes Yes (w/filtration)	Depends on Q Yes Yes (w/filtration)
Leaching fraction (LF):	Lowest (Try to keep <10%)	Highest (≥30%; adjust with quality)	Intermediate (10%-30%)
Fertilization	Monitor thru EC; Reduced CRF + dilute fertigation is applicable	Monitor/adjust continuously thru LF (monitored fertigation is preferred)	Monitor/adjust frequently thru LF (Use stable CRFs OR monitored fertigation)

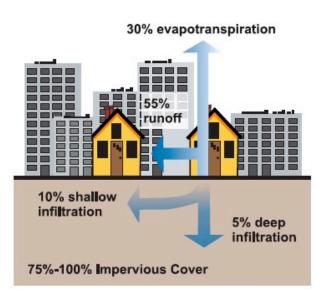

From: R. I. Cabrera (2018)

Chemical quality parameters in suitable and alternative water sources for irrigation of ornamental/landscape plants

Chemical Suitable Parameter Water	Municipal reclaimed water							
	AIf	Santa Rosa, CA	El Paso, TX	San Antonio, TX	Lake Buena Vista, FL	Evesham, NJ	- Residential Graywater	
рН	6.0 – 8.0	7.3 – 8.3	7.3	7.2 – 7.8	7.2 – 7.5	7.1 – 7.9		6.4 - 8.7
EC (dS/m)	< 1.0	1.6 – 4.7	0.7	1.5 – 1.9	0.9 – 1.2	0.6 - 0.7	0.5 - 0.6	0.3 – 1.4
Na (mg/L)	< 70	50 – 560	82	160 – 280	90 – 102	74 – 100	54 – 58	30 – 480
Cl (mg/L)	< 110	30 – 510		200 – 340	135 – 190	99 – 140	56 – 61	3 – 140
B (mg/L)	< 1.0	0.1 - 0.4	0.4	0.2 - 0.3	0.2 - 0.3		0.2 - 0.3	0.4 – 1.5
HCO ₃ (mg/L)	< 110	105 – 250	95553	194 – 220	259 – 305	255	142 – 153	70 – 470
SAR	< 6.0	2.8 - 8.7		5.1 – 9.0	2.4 – 2.6		2.3 – 2.4	4.2 - 28.1

From: Cabrera et al., 2018 (HortTechnology 28(4): In Press)


Stormwater

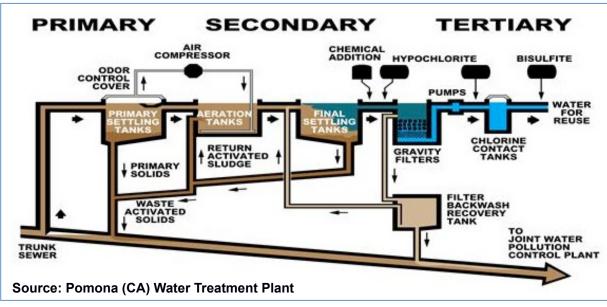


Water from roofs, parking lots, roads and impervious surfaces. Goes to sewer systems and (mostly) to surface water bodies. Can be routed to designed ponds & rain gardens.

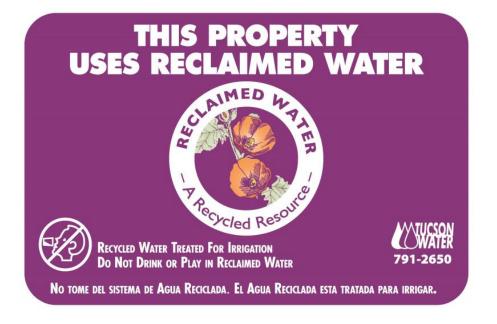
Quality is highly variable; generally laden with salts, oils, sediments &

Rainwater

Rainwater from roofs; best quality; limitations with volume capture and storage, along with severe/prolonged drought periods.

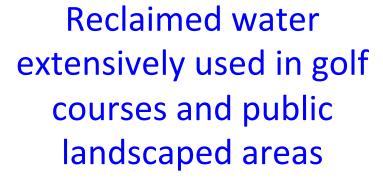


22,000 gallon rainwater tank at Texas A&M R&E Center in Uvalde.


Good enough for a single 0.6" irrigation to the landscape (66,000 ft²= 1.5 ac) in this facility!

Reclaimed (recycled) Water

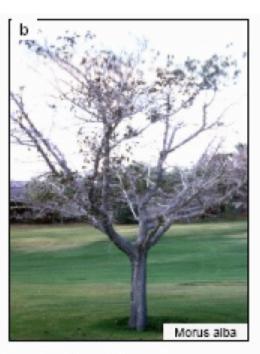
Reclaimed Water


- Sewage water processed by municipal water plants (treatment methods: preliminary, primary, secondary and advanced)
- Availability not interrupted by drought
- Quality can be highly variable (nutrients, salts, alkalinity)
- ➤ Its use is highly regulated: protection of public health is paramount (restricted use where human contact is likely)
- ➤ Handling and distribution requires separate plumbing (with identifying color= purple) from treatment plant to end-users.
- Successful use requires routine monitoring of its quality to minimize negative effects on plants and soils.

Water quality comparison based on level of total coliform bacteria

Water Source	MPN/100 mL (Most Probable Number)		
Drinking Water	<1		
Disinfected Tertiary Recycled Water	<2.2		
Disinfected Secondary Reclaimed Water	<23		
Undisinfected Reclaimed Water	20 to 2,000		
Graywater	100 to 100 million		
Raw Wastewater	Millions to billions		

From: Sheikh, 2010



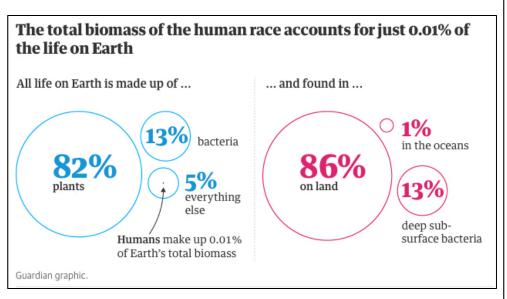
Foliar salt damage from reclaimed water irrigation

Miyamoto et al.

Fig. 1. Foliar damage caused by daily sprinkling of irrigation water containing 1200 ppm of dissolved salts

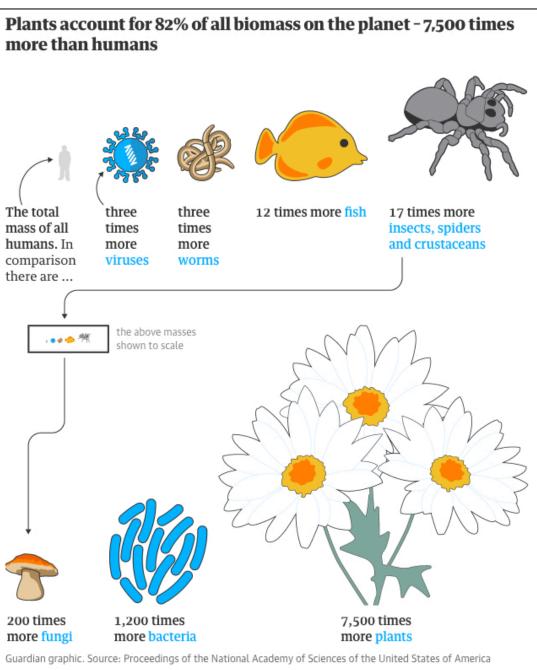
Estimated irrigation applications required to leach soluble salts from soils

Percentage of Salt Reduction	Required Irrigation Rate
50%	6 in (150 mm)
80%	12 in (300 mm)
90%	24 in (600 mm)

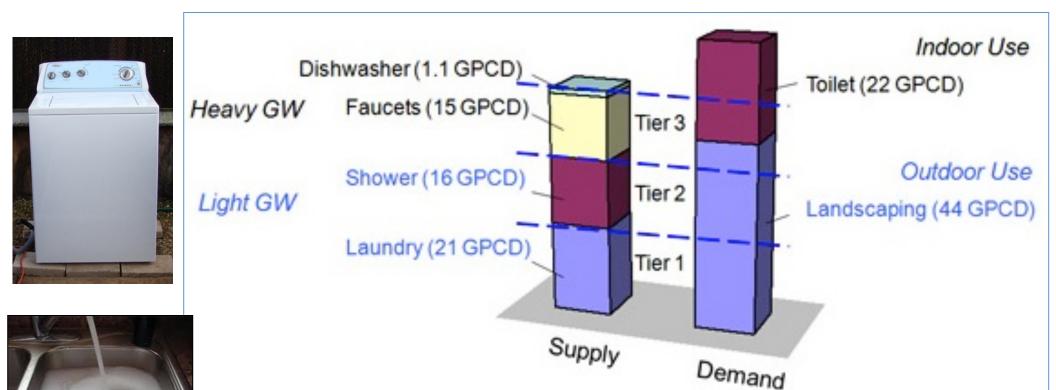

Example: If the ECe of a landscape soil is 8 dS/m, and we want to reduce it to 4 dS/m (50% salt reduction), an irrigation rate of 6 inches will be required, equivalent to 3,740 gal/1,000 ft² (24,300 gal. in a 6,500 ft² home landscape)

Source: Cardon, Davis, Bauder and Waskom (2007)

Soil Microbiology in site irrigated w/reclaimed water


	3,808 1.57 (very good)		Tap Wat	Tap Water		Reclaimed Water	
Total Living Microbial Biomass (PLFA ng/g)			5,961 1.60 (very good)		5,012 1.45 (good)		
Functional Group Diversity Index (<1.0 to >1.6)							
Functional Group	Biomass (PLFA ng/g)	%	Biomass (PLFA ng/g)	%	Biomass (PLFA ng/g)	%	
Total Bacteria	2,177	56	3,203	54	2,214	46	
Gram (+)	1,199	32	1,757	30	1,347	28	
Actinomycetes	391	10	587	10	367	8	
Gram (-)	918	24	1,445	24	867	18	
Rhizobia	56	2	93	2	53	2	
Total Fungi	482	12	633	11	361	8	
Arbuscular Mycorrhizal	154	4	259	4	82	2	
Saprophytes	328	8	374	6	279	6	
Protozoa	38	1	120	2	20	0	
Undifferentiated	1,171	31	2,006	34	2,416	46	
Solvita CO2 burst-ppm CO2-C	127		157		94		
Organic Matter - % LOI	5.50		8.47	8.47		3.60	

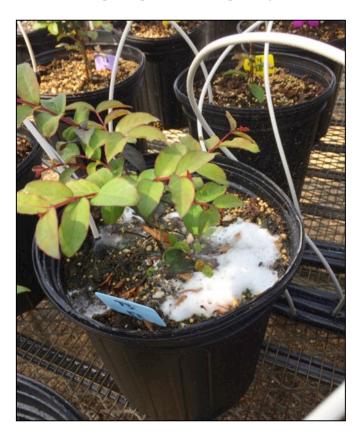
Note: Data are means of three (n=3) composite soil replicates (vegetated with cool-season turfgrass)



How important are microorganisms?

Bar-On, Y.M., R. Phillips, R. Milo. 2018. The biomass distribution on Earth. *Proc. Nal. Academ. Sci.*

Graywater: Untreated household wastewater from bath-tubs, laundry, and showers. Accounts for 50-65% of total household wastewater (EPA, 2012; Roesner et al., 2006; Sheikh, 2010)



Potential for potable water savings in the residential sector of southern California with graywater reuse (Y. Cohen, 2009)

Short- & long-term effects of graywater irrigation

Plant growth-aesthetics & soil properties (SS, microbiology, physico-chemical) in research plots & residential sites irrigated with laundry graywater.

Including alternative (biodegradable/environmentally-friendly detergents and bleaching agents) graywater treatments.

		EC	Chlorine (mg/L)	
Treatment	рΗ	dS/m	Free	Total
Tap Water	6.9	0.5	0.3	0.3
Detergent	7.2	0.5	0.6	0.4
D+Softener	7.2	0.5	0.6	0.3
D+S+Bleach	7.7	0.8	48.3	63.4

Graywater w/bleach has high Cl₂ concentrations - harmful to some plants and soil/substrate microorganisms.

Alternative bleaching agents (peroxide based) are highly alkaline and sodic – harming some plant species.

Preliminary landscape graywater irrigation study

Phospholipid Fatty Acid (PLFA) Soil Microbial Community Analysis

	Control (well	water)	Graywater (D+S+B)		
Total Living Microbial Biomass (PLFA ng/g)	1,644		883		
Functional Group Diversity Index (<1.0 to >1.6)	1.57 (very g	jood)	1.2 (slightly below avg.)		
Functional Group	Biomass (PLFA ng/g)	%	Biomass (PLFA ng/g)	%	
Total Bacteria	881	54	439	50	
Gram (+)	539	33	310	35	
Actinomycetes	213	13	101	11	
Gram (-)	342	21	130	15	
Rhizobia	12	0.7	0	0	
Total Fungi	183	11	25	3	
Arbuscular Mycorrhizal	52	3	0	0	
Saprophytes	131	8	25	3	
Protozoa	21	1	0	0	
Undifferentiated	558	34	419	47	

Cabrera et al. (2018, HortTechnology 28(4): In Press)

