PLANT NUTRITION AND FERTILIZER MANAGEMENT IN NURSERY OPERATIONS

Organized and Presented by:

María de la Fuente Gerardo Spinelli Donald Merhaut Lorence Oki

- I. Essential Nutrients
- II. Nutrient Uptake Processes
- **III. Fertilizer Types**
- **IV. Monitoring Crop Fertility Status**

I. Essential Plant Nutrients

- **A. Essential Nutrients**
- **B. Nutrient Uptake**
- **C.** Nutrient Allocation in Plants
- **D.** Plant Nutrient Disorders

I. Essential Plant Nutrients

- A. Essential Nutrients
- **B.** Nutrient Uptake
- **C.** Nutrient Allocation in Plants
- **D.** Plant Nutrient Disorders

What is in a plant?

Organic matter – 22-27%

Minerals – 3-15% from soil by roots

What is in a plant?

Organic matter – 22-27%

(carbon, sugars)

Minerals – 3-15% from soil by roots

from soil by roots

What is in a plant?

Organic matter – 22-27%

Macronutrients Dry tissue concentration = %

Element	Abbreviation
Nitrogen	Ν
Phosphorus	Ρ
Potassium	K
Sulfur	S
Calcium	Ca
Magnesium	Mg

Nancy Peterson's Kite Sails Calmly and Magnificently.

Macronutrients tissue concentration = %

Report Number 16-152-0012

Lab No:

4741 East Hunter Ave, Suite A Anaheim, CA 92807 Main 714-282-8777 º Fax 714-282-8575 www.waypointanalytical.com

Crop : BLACKBERRIES

Customer Account Number :

Send To :

Grower :

PLANT ANALYSIS

Report Date : 6/2/2016 Page 7 of 13

Organic Blackberry - 2014 Victori Field id:

	Nitrogen %	Sulfur %	Phosphorus %	Potassium %	Magnesium %	Calcium %	Sodium %	Boron ppm	Zinc ppm	Manganese ppm	Iron ppm	Copper ppm	Aluminum	
Analysis	3.26	0.27	0.30	1.51	0.35	0.83	0.06	37	73	96	200	17		
Normal	2.00	0.21	0.25	1.50	0.30	0.60	0.00	30	20	50	50	7		
Range	2.99	0.50	0.39	2.49	0.89	2.49	0.19	50	50	200	200	50		
	NIS	N/K	D/S	P/7n	KiMa	KillAn	Ca/B	Eeltha	Ca/K	CalMo			1 1	
Actual Ratio	12.1	2.2	1.1	41.1	4.3	157.3	224.3	2.1	0.5	2.4		-		
Expected Ratio	7.0	1.3	0.9	91.4	3.4	159.6	386.3	1.0	0.8	2.6				
			1 1						_	1 1				
Very High														
High														
Sufficient														
Low														
Deficient														
	N	8	P	K	Mo	Ca	Na	8	70	Mo	Fe	Cr.	AL	

UCCE

Micronutrients

*dry tissue concentration = ppm 1 ppm = 0.0001 % Example: Fe 50 ppm = 0.0050 %

<u>Element</u>	Abbreviation
Iron	Fe
Manganese	Mn
Copper	Cu
Boron	В
Zinc	Zn
Molybdenum	Мо
Chlorine	Cl
Nickel	Ni

Fertilizer Management Cuts Back the Zone of Most Clutter of chemicals Nicely

Micronutrients tissue concentration = ppm

Report Number 16-152-0012

Lab No:

4741 East Hunter Ave. Suite A Anaheim, CA 92807 Main 714-282-8777 º Fax 714-282-8575 www.waypointanalytical.com

Crop : BLACKBERRIES

Customer Account Number :

Send To :

Grower

PLANT ANALYSIS

Report Date : 6/2/2016 Page 7 of 13

Organic Blackberry - 2014 Victori Field id:

	Nitrogen %	Sulfur %	Phosphorus %	Potasaium %	Magnesium %	Calcium %	Sodium %	Boron ppm	Zinc ppm	Manganese ppm	Iron ppm	Copper ppm	Aluminum ppm
Analysis	3.26	0.27	0.30	1.51	0.35	0.83	0.06	37	73	96	200	17	
Normal	2.00	0.21	0.25	1.50	0.30	0.60	0.00	30	20	50	50	7	
Range	2.99	0.50	0.39	2.49	0.89	2.49	0.19	50	50	200	200	50	
			1 1							1			
	N/S	N/K	P/S	P/Zn	K/Mg	K/Mn	Ca/B	Fe/Ma	Ca/K	Ca/Mg		_	
Actual Ratio	12.1	2.2	1.1	41.1	4.3	157.3	224.3	2.1	0.5	2.4			
Expected Ratio	7.0	1.3	0.9	91.4	3.4	159.6	386.3	1.0	0.8	2.6			
Very High							-			_			
High													
Sufficient													
Low													
Deficient													
CONTRACTOR OF A						and the second s	the second se		the second se	the second se	and the second se	and the second se	

Essential Plant Nutrient Guide

Essential Plant Nutrient Guide

This should serve only as a general guideline since nutrient requirements will vary by differences in climate, cultural conditions and plant species. The following list gives a general description of characteristics associated with

each element. *Number range (percentage or ppm) gives approximate nutrient concentrations for healthy plants.

*Nutrient Interactions (Toxicity) - describes possible deficiencies of other elements if said element is available in high quantities. *Nutrient Interactions (Deficiency) - lists other elements, which when in high quantities, may induce deficiencies of said element.

Nitrogen (N) – mobile (1.0-6.0%) Deficiency Symptoms

Mild. Uniform yellowing and senescence of older leaves.

Severe. Canopy chlorotic, plants stunted. Soils

*Waterlogged; anaerobic (low oxygen availability); leached sandy soils may be nitrogen deficient.

Nutrient Interactions

Toxicity. NH4⁺ - competes with K, Ca, Mg. Ammonium uptake is optimum at neutral pH and uptake decreases at lower soil pH. Symptoms of ammonium toxicity include leaf necrosis of older leaves, stem lesions and stunted root and shoot growth. NO₅ - competes with P and S. Nitrate uptake is optimum between pH 4.5 and 6.0.

Phosphorus (P) – mobile (0.2-0.5%) Deficiency Symptoms

Mild. older leaves turn dark green to purple. Stems of herbaceous plants become dark red.

Severe. older leaves dark purple necrotic spots.

Soils

*pH. Precipitates with Fe (low pH) or Ca (high pH), inducing deficiency of Fe and P or Ca and P, respectively.

*Cold, wet soils induce P deficiency Nutrient Interactions

Toxicity. P competes with Fe, Zn, and Cu. *Deficiency.* Fe, Zn, Al, and Ca compete with P. *Caution.* Many Australian native plants and

acid-requiring paints such as azalea, blueberry, and rhododendrons have lower P requirements.

Potassium (K) - mobile (1.5-4.0%)

Foliar K:N ratio 1:1 considered ideal. Deficiency symptoms

Mild. chlorosis and necrosis develop initially on leaf margins of 2nd and 3rd oldest leaves. Monocots exhibit orange-tan speckling.

Fruit and flower quality decrease (shorter shelf-life).

*Treatment - fertilizer (soil + foliar) effective only on newer leaves. Older necrotic leaves will not recover. Soils

*Sandy, acid soil; organic soil; peat-based mix.

Nutrient Interactions

Toxicity. K competes with Ca and Mg. Deficiency. Ca and Mg compete with K.

Calcium (Ca) - immobile (0.5-1.5%)

Foliar Ca:Mg ratio of 2:1 and K:Ca ratio of 4:1 considered ideal <u>Deficiency Symptoms</u>

Mild. New leaves chlorotic, deformed, stunted. Severe. Leaf necrosis, meristem dies. Problematic Situations *Dry soils, erratic irrigation. *High humidity, which reduces transpiration.

<u>Nutrient Interactions</u> <u>Toxicity</u>. Ca competes with Fe, Mn, Zn, Cu.

I. Essential Plant Nutrients

- **A. Essential Nutrients**
- **B.** Nutrient Uptake
- **C.** Nutrient Allocation in Plants
- **D.** Plant Nutrient Disorders

Roots Water and Nutrient Uptake

Cortex

Rootcap

Epidermis

barrier to apoplastic flow. After this point, things much pass through cell membranes (symplastic movement)

*Endodermis

Root Hairs and/or Mycorrhizae

Nutrient Uptake Processes

*<u>Active</u> - requires energy, derived from respiration

*<u>Selective</u> - roots distinguish one nutrient from another nutrient

Nutrient Uptake Influx/Efflux Processes and Selective

Nutrient uptake Signals from Shoots

Signals from shoots to roots

Proteoid Roots

- *Cluster root development by select plant species *Cluster roots originate from plant.
- *Signal from shoots for development
- *Signal from shoot phosphorus deficiency.
- *Shoot Nitrogen and Iron deficiency also.

Mycorrhizal Roots

*Beneficial fungi colonize outside and/or inside roots *Symbiotic relationship with root.

*Nursery systems

- -Media specific
- <u>Only low fertility/no fungicide program</u>
- -Infectivity minimal
- Effectivity minimal

*Exceptions: native nurseries with extremely low fertility programs.

I. Essential Plant Nutrients

- **A. Essential Nutrients**
- **B. Nutrient Uptake**
- **C.** Nutrient Allocation in Plants
- **D.** Plant Nutrient Disorders

Nutrient Uptake Processes

*Mobile - move upward in xylem from roots. Also can be remobilized from older tissues and translocated in phloem to younger growth.

Mobile Nutrients

Nutrient Uptake Processes

*Immobile - move only upward in xylem from roots

Immobile Nutrients

no iron available poor root system

I. Essential Plant Nutrients

- **A. Essential Nutrients**
- **B.** Nutrient Uptake
- **C.** Nutrient Allocation in Plants
- **D.** Plant Nutrient Disorders

Essential Plant Nutrient Guide

Nitrogen (N) – mobile (1.0-6.0%)

Deficiency Symptoms

Mild. Uniform yellowing and senescence of older leaves.

Severe. Canopy chlorotic, plants stunted. Soils

*Waterlogged; anaerobic (low oxygen availability); leached sandy soils may be nitrogen deficient.

Nutrient Interactions

Toxicity. NH⁴⁺ - competes with K, Ca, Mg. Ammonium uptake is optimum at neutral pH and uptake decreases at lower soil pH. Symptoms of ammonium toxicity include leaf necrosis of older leaves, stem lesions and stunted root and shoot growth. NO³⁻ - competes with P and S. Nitrate uptake is optimum between pH 4.5 and 6.0.

Essential Plant Nutrient Guide

his should serve only as a general trient Interactions (Toxicity) - describes ible deficiencies of other elements if

e deficiencies of other elements if imment is available in high quantities nut Interactions (Deficiency) – lists lements, which when in high

hK Ca Me

us (P) - mobile (0,2-0,5%)

ency <u>Symptoms</u> older leaves turn dark green to purpl of herbaceous plants become dark a. *vere.* older leaves dark purple necrotic

Soils "pH. Precipitates with Fe (low pH) or Ca (high pH), inducing deficiency of Fe and P or Ca and P, respectively. "Cold, wet soils induce P deficiency Nutrient Interactions

Toxicity. P competes with Fe, Zn, and Cu Deficiency. Fe, Zn, Al, and Ca compete Deficient with P. Win P. Caution. Many Australian native plants and acid-requiring paints such as azalea, blueberry, and rhododendrons have lower P

otassium (K) – mobile (1.5–4.0%) Foliar K:N ratio 1:1 considered ideal

Poliar K:N ratio 1... <u>Deficiency symptoms</u> Mild. chlorosis and necrosis develop initially on leaf margins of 2nd and 3nd olv Monocots exhibit orange-tan initially our leaves. Monocots exhaust the second second second second provide the second second second second shelf-life). "Treatment - fertilizer (soil + foliar) effective only on newer leaves. Older necrofic leaves will not recover.

<u>Soils</u> *Sandy, acid soil; organic soil; peat-base

Nutrient Interactions Toxicity. K competes with Ca and Mg. Deficiency. Ca and Mg compete with F

Calcium (Ca) – immobile (0.5-1.5%) Coliar Ca:Mg ratio of 2:1 and K:Ca ratio of :1 considered ideal 4:1 consider Deficiency Symptoms Mild. New leaves chlorotic, deformed, Severe. Leaf necrosis, meris Problematic Situations *Dry soils, erratic irrigation. *High humidity, which redu

Nutrient Interactions Toxicity. Ca competes with Fe, Mn, Zn, Cu

- Plant requirements: 1-6%
- Fertilizer types: NH₄⁺, NO₃⁻, urea, manures
- Plant: Mobile
- Cultural: NH₄⁺ can reduce K⁺, Ca⁺⁺ and Mg⁺⁺ uptake; NO₃⁻ can reduce PO₄⁻² and SO₄⁻² uptake

Nitrogen Uptake

Nitrogen cycling

• <u>Sources</u>

- Fertilizer
- Substrates/Medium -mineralization
- Irrigation Water
- Atmosphere N fixation, pollution
- Sinks
- Plant uptake
- Microbes in media immobilization
- Atmosphere denitrification (NO₃ -> N₂, N₂O)
 - ammonia volatilization (NH₄ -> NH₃)
- *Runoff of NO₃⁻, a negatively charged particle

Nitrogen

- Amino acids protein building blocks
- Chlorophyll structure
- Enzyme processes
- Turgidity osmotic potential + stomate control

Nitrogen Deficiencies

Environmental and Cultural conditions

- Cold soils
- Wet soils
- Sandy soils
- High C:N ratio organic substrates
- Leached soils
- flooded, warm soils

Nitrogen Deficiencies

- Yellowing oldest leaves
- Stunting of whole plant
- Toxicity- succulence, necrosis

Maize

Mum – yellow, stunted

Citrus

Phosphorus

Plant requirements: Taken up as: 0.20-0.50%H₂PO₄⁻ and HPO₄⁻²

Fertilizer types:

Plant:

Phosphates (PO₄)

Mobile

Soil:

Usually immobile

Cultural:

Cold soils - added N:P ratio of 10:1 P can reduce Zn

Phosphorus Cycling

<u>Sources</u> *Fertilizer *Substrates/Medium *Irrigation Water

Sinks *Plant - uptake *Microbes in media – immobilization *chemical precipitation

*Leaching *Runoff

*Runoff of H₂PO₄⁻², a negatively charged particle

Soil Reactions

Phosphorus Availability: as affected by <u>soil</u> pH^{*}

Greatest P availability

*Adapted from Western Fertilizer Handbook.- Second Horticulture Edition. 1998. California Fertilizer Association Figure 4.4

Phosphorus

DNA and RNA – in genetic material ATP – chemical energy transfer and storage

Mobile in plants

Phosphorus Deficiencies

Environmental and Cultural conditions

>Cold Soils

>Limited root growth

Rapid vegetative growthAcid soilsCalcareous soils

Possible susceptible plants to Toxicity

Plant that have mycorrhizal and rhizobial associations and proteoid roots. Australian natives – Protea, Boronia, Grevillia Ericaceous plants – Azalea, blueberry, Rhododendron

Proteiod Roots

Proteoid Roots from Leucospermum cordifolium – formed by plant in response to P, N and Fe deficiency (signal from shoots)

wikipedia

Phosphorus Deficiencies

>Dark green/purple, necrosis - oldest leaves
>Stunting - of roots
>Reduced flowering, seeds, and fruits
>Toxicity causes Fe, Zn, Cu deficiency
>Decreased nutrient uptake

Mum - dark green + stunted

Rice - necrosis

Mum - necrosis

Maize - reddening

Phosphorus Deficiencies Fertilization Methods

Potassium

Plant requirements:

1.5-4.0%

Taken up as:

K+

Fertilizer types:

Plant:

K salts (KCl, K_2SO_4 , etc.)

Mobile

Soil:

Usually immobile

Cultural:

Sandy, acid soilsOrganic soilspeat soils

Potassium Cycling

Sources *Fertilizer *Irrigation Water

Sinks *Plant - uptake *bound by clay and mineral lattices *insignificant binding in media

*Leaching – for containers *Runoff- for containers

*Runoff of K⁺ in media, but will be tied up in clay particles.

Potassium

Functions in plants

*Sugar translocation *Starch formation *Guard cells – stomatal opening/closing *Cell turgor

Mobile in plants

Potassium Deficiencies

Environmental and Cultural conditions

*wet, compacted soils
*sandy, leached soils
*dry environment
*heavily cropped soils
*Excess applications of nitrogen
*high organic soils

Susceptible plants *Palms – select species *Leafy tropicals – select types

Potassium Deficiencies

*yellowing - speckling - edges of older leaves *leaf scorch - edges look burnt *'lodging' of grasses <u>*Toxicity = Mg deficiency</u>

Blueberry

Corn

Avocado — similar to the more common chloride tip burn

0.10-0.50%

Taken up as:

Fertilizer types:

Plant:

Soil:

Cultural:

Sulfate (SO₄-²) Sulfur dioxide (SO₂)

Salts (MgSO₄, K₂SO₄, etc.)

*Not Mobile

*Mobile

*Sandy, acid soils *Organic soils *peat soils *cold soils

Sulfur

Functions in plants

*Protein synthesis \rightarrow key proteins of:

*Stress induced proteins *Pathogen induced proteins *Nitrogen assimilation

Not Mobile

Sulfur Deficiencies

>yellowing - younger leaves >red/purple leaves - extreme >woody stems >longer roots, unbranched roots >stunting and delayed maturity Toxicity = 0.5-0.7 mg/M³ air. Necrotic spots >deficiencies less in urban industrial regions

Apple – stunted + yellow

Tomato - yellow

Sulfur Deficiencies

Older

Younger

No sulfur

Yes sulfur

Sugar beet – young and old leaves yellow and stunted

No sulfur

Yes sulfur

Potato – R to L, def symptoms increase. Same age leaves

Sorghum – new leaves yellow

Symptomatic of Nitrogen Deficiency

Schefflera – yellow leaves

Fertilizer types:

0.5-1.5%

Lime $(CaCO_3)$ - Inc. pH, Gypsum $(CaSO_4)$ Calcium chloride $(CaCl_2)$

Plant:

Not mobile

Cultural:

>Uptake reduced: NH₄>Mg>K>Na
>Irregular soil moisture availability
>High humidity
>NO₃ inc. Ca uptake
>Acid soils - leached
>Plant Ca:Mg of 2:1
>Plant K:Ca of 4:1

Calcium Cycling

Sources *Fertilizer *Irrigation water *Soil *Liming

Sinks *Plant – uptake *Chemical precipitation in soils phosphorus at: pH ≥ 6.5

*Containers - leached *Soils - leached in acid sandy soils

Calcium

Functions in plants

>Cell wall integrity>Cell membrane integrity>Cell expansion through osmotic effects in vacuoles

Calcium Deficiencies

>chlorotic, deformed - younger leaves
>necrosis - extreme
>'Blossom-end rot', bitter pit of fruit
>'Brownheart of heading vegetables
>stunted, branched roots
>Toxicity = Mg, K deficiency

Mum - deformed

Tomato – blossom end rot Irregular irrigation during fruit set

Citrus - chlorosis

Calcium Deficiencies

Tomato – tip dieback and subsequent branching of roots

Apple – bitter pit

Blueberry – chlorosis of new growth

Fertilizer types:

Plant:

Cultural:

0.15-0.40% Ca:Mg 2:1 K:Mg 8:1

MgSO₄*7H₂O Dolomite (CaCO₃)(MgCO₃)MgO

Mobile

Reduced by K, NH₄, Ca, Na
 sandy, leached soils
 Acid soils

Magnesium Cycling

<u>Sources</u> >Fertilizer >Irrigation water >Soil >Liming - dolomite

Sinks >Plant – uptake >Chemical precipitation in soils

>Containers - leached
>Soils - leached in acid sandy soils

Magnesium Deficiencies

>Xmas tree patterned chlorosis
>Interveinal chlorosis – oldest leaves
>Stiff, brittle, veins twisted - extreme

Mum- lower leaf chlorosis

Peach- chlorosis

Palm - chlorosis

Magnesium Deficiencies

Tobacco – Sand drown (excess irrigation or rain)

Citrus - chlorosis

Tobacco – interveinal chlorosis

Micronutrients

Element	Abbreviation
Iron	Fe
Manganese	Mn
Copper	Cu
Boron	В
Zinc	Zn
Molybdenum	Мо
Chlorine	Cl
Nickel	Ni

Fertilizer Management Cuts Back the Zone of Most Clutter of chemicals Nicely

50-75 mg/kg (ppm) P:Fe of 29:1

Fertilizer types:

Plant functions:

FeSO₄, FeCl₂, Fe-chelates

Enzyme reactions – oxidation/reduction *nitrate reduction *photosynthesis

Cultural:

>High pH >Poor drainage >NO₃/high pH reduced Fe

Iron Deficiencies

>Interveinal chlorosis - younger leaves
>Toxicity = bronzing, speckling leaves
>root inhibition, roothair promotion (except grasses)

Citrus

Mum

Sorghum

Avocado

10-40 mg/kg (ppm)

Fertilizer types:

Plant functions:

Cultural:

MnSO₄, MnCl₂, Mn-chelates

Enzyme activator >free radical protection >energy transfer

>High pH>Poor drainage>Acid soils = toxicity

Manganese Deficiencies

>Interveinal chlorosis – young leaves
>'Gray Speck'
>Toxicity = marginal yellowing young leaves
>Toxicity = measles on stems, fruit

Citrus

Tomato

Avocado

Palm – cool temperatures

3-20 mg/kg (ppm) 200 ppm in fungicides

Fertilizer types:

Plant functions:

CuSO₄, CuCl₂, Cu-chelates

>Lignification of cell walls>Carbohydrate transport>Pollen viability

Cultural:

Zn, Mo, Al reduce Cu

Copper Deficiencies

>Chlorosis, bleached leaves>Distorted leaves and stems>Toxicity = Fe deficiency

Barley – 'pigtailing'

Aglaonema – leaf curling

Citrus – stem dieback

Citrus – gum pockets

Sugar beet – leaf bleaching

20 mg/kg (ppm)

Fertilizer types:

Plant functions:

Borax, Solubor, Boric acid

>Cell wall synthesis
>Plasma membrane integrity
>Root elongation
>Pollen viability

>B def. reduces P uptake>Ca reduces B toxicity

Cultural:

Boron Deficiencies

>Deformed, thick, dark green growing tips

>Roots - slimy, thick, cracked, bumpy, necrotic

>Crown, heart rot
>Toxicity = leaf tip necrosis scorch

5-10 ppm water (sensitive plants)

Apple – stem necrosis

Grape – clubroot, splitting

Grape – fruit set

Strawberry – fruit set

15-50 mg/kg (ppm)

Fertilizer types:

ZnSO₄, ZnNO₃, Zn-chelates

Plant functions:

>Enzyme activity>Membrane integrity>Auxin metabolism

Cultural:

>P reduces Zn uptake>Zn reduces Fe, Mn uptake

Zinc Deficiencies

>Interveinal chlorosis - young leaves
>Banding chlorosis in monocots
>rosetting of shoots - auxin dysfunction
>Toxicity = Fe, Mn, P deficiency

Apple – rosetting

Sugar beet

Peach - rosetting

Molybdenum

Plant requirements:

0.15-0.30 mg/kg (ppm)

Fertilizer types:

(NH₄)₂Mo₄, Na₂Mo₄, molybdic oxides

Plant functions:

Nitrate reductionNitrogen-fixing enzymes - legumes

Cultural:

>Sandy, leached acid soils

Molybdenum Deficiencies

>Chlorosis, curling - older leaves
 >N deficiency – with nitrate-nitrogen fertilizer
 >Whiptail brassicas

>Marginal chlorosis of middle-aged leaves (Poinsettia)

>Toxicity = no

African violet

Mum

Potato – left leaf

Plant requirements:

0.05-5.0 mg/kg (ppm)

Fertilizer types:

>usually present as impurities

Plant functions:

>assimilation of urea-nitrogen

Cultural:

>Sandy, leached acid soils

Deficiency symptoms:

>'mouse-ear' in all leaves
>stunted plants

