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Abstract
Water distribution network (WDN) failures can disrupt operations and cause economic 
damage. Although leakage has been widely discussed, few studies have integrated spatial 
clusters with engineering, environmental, and socioeconomic factors simultaneously. This 
study proposes an approach to explore the role of socioeconomic factors in understanding 
leak risks. Using a unique data set of more than 4,000 reported leak events within the City 
of Los Angeles (2010–2013), the analysis (1) assesses the effectiveness of including socio‑
economic factors with engineering factors in explaining observed leaks, (2) identifies spa‑
tial clusters of leaks, and (3) develops a predictive model with machine learning to identify 
spatial areas with high risks of failure. Results indicate that distinct clusters of leaks are 
evident, accounting for 20–30% of all leaks in the study area in a given year. Multivariate 
regression modeling showed that geography, socioeconomic, and engineering factors are 
statistically significant in predicting leaks. A predictive model with machine learning was 
developed, identifying key factors. The model had accuracy rates of 93.29% and 92.45% 
for interpolation and extrapolation prediction scenarios, respectively. The approach dem‑
onstrates the potential value of incorporating socioeconomic indicators into the models for 
WDN rehabilitation. Moreover, the approach demonstrates how municipal leak loss miti‑
gation programs can consider a broad set of predictive factors to optimize investments.
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1 Introduction

Critical infrastructures, such as water distribution networks (WDNs), are extremely impor‑
tant to urban communities. In many established cities with aging infrastructure, water 
losses in the underground pipes of WDNs present a management challenge (Robles‑
Velasco et al. 2023). Approximately 0.24 million water main breaks occur in the U.S. every 
year because of the aging WDNs, with losses of more than two trillion gallons of treated 
drinking water (American Society of Civil Engineers 2017). Considerable investments are 
needed to uncover and rehabilitate WDNs (Abokifa and Sela 2023). Some urban water util‑
ities cope with future water demands to meet population growth and limited new supply 
sources. Hence, effort to reduce leak loss are an increasingly popular component of supply 
and demand management options.

Leaks in WDNs affect utilities and residents. Utilities recover the production costs 
of these losses, including system repairs, through other means. Leaks have operational 
impacts on WDNs, where they can reduce system pressure and lead to frequent future sup‑
ply disruptions. Property damages from catastrophic leaks may incur economic losses for 
liable utilities and affected residents and businesses. In some cases, leaks can even require 
utilities to issue public health advisories to boil water before consumption.

Developing trustworthy predictive models requires significant effort to identify fac‑
tors that affect leakage. Over the years, many potential leakage‑causing factors have been 
assessed using indirect (e.g., water audits) and direct (e.g., gas injection, acoustic monitor‑
ing, and visual inspections) techniques (Hunaidi 2006; Misiūnas 2008). These factors can 
be roughly categorized into two groups: engineering and environment (Barton et al. 2019). 
Engineering factors include system pressure, pipe age, pipe material, soil type, and system 
configuration. Meanwhile, environmental factors include temperature and precipitation, 
which also have an impact on WDN leaks.

In cities, human decisions regarding the design, layout, and operational requirements 
of infrastructure systems are driven by engineering and socioeconomic factors (Swilling 
2011). Hence, infrastructure systems are known to be products of technical design require‑
ments and political and socioeconomic influences (Rahimi‑Golkhandan et al. 2022). The 
engineering and environmental factors that influence the occurrence of urban leaks are well 
understood. However, the potential socioeconomic influences of leak occurrence, such as 
the density of connections or income trends, have not been explored. WDNs are infrastruc‑
ture networks developed by organizations to meet societal needs. Hence, we can consider 
them as products of institutional planning and technical requirements.

This study analyzes leak failure risks in urban WDNs by incorporating engineering and 
socioeconomic factors to understand the prevalence of observed leaks in a metropolitan 
water system. The analysis addresses three questions. First, are socioeconomic and geo‑
graphic characteristics explanatory factors of observed leaks? Second, can spatial clusters 
of leaks be observed in non‑random patterns across a metropolitan WDN? Third, can pre‑
dictive models of leak risk be developed that include engineering and socioeconomic fac‑
tors? To address these questions, we employ multiple linear regression (MLR) to assess the 
validity of incorporating socioeconomic indicators as explanatory factors explaining leak 
occurrence. Then, we analyze the spatial high‑risk clustering in observed leaks. The results 
of these procedures are used to develop a predictive model with machine learning (ML), 
which includes engineering and socioeconomic drivers of urban water leak risks. The 
procedures are implemented for a case study of the City of Los Angeles, using a unique 
data set of over 4,000 reported water supply pipe leaks for 4 years (2010–2013). The study 
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concludes with a discussion of how the results can inform a broader perspective on leak 
loss mitigation programs in cities to improve utility operations and provide design guid‑
ance for urban planners.

2  Methods

Three modeling‑related procedures—MLR, scan statistic approach, and ML technique—
were established to investigate the influence of socioeconomic factors in predicting leak 
loss events. Figure 1 shows a summary of the modeling approach, data, and workflow.

2.1  Study Area

LA City is home to four million people. The city is situated in a large coastal basin and 
is surrounded by mountains, covering approximately 4,000 square miles. LA City has a 
municipally owned utility, the Los Angeles Department of Water and Power (LADWP), 
which supplies water and electricity services to residents.

Water infrastructure failures have become an issue of public concern for LADWP partly 
because of multiple prominent water main breaks that resulted in local surface flooding. 
Within the service territory of LADWP, more than 30% of water supply mains are over 80 
years old. Moreover, approximately 6% of the 6,800‑mile water supply distribution pipes 
are classified as a high priority for replacement (LADWP 2023).

Fig. 1  Analysis procedure
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The degraded water pipes in LA City have caused serious failures and localized surface 
flooding. The problem of reported leak events is of high importance owing to the public 
scrutiny caused by the leaks and the city’s noted water management challenges for supply‑
ing water to 4 million residents in a seasonally dry climate. Water managers estimated the 
annual combined water losses from leakage, firefighting, evaporation, and evapotranspira‑
tion to be 30  billion liters, equivalent to the annual supply for up to 50,000 households 
in the region (Poston and Stevens 2015). In addition, leaks have caused property damage 
(Reyes‑Velarde 2018). Hence, LA City had to spend one billion USD to repair damage fol‑
lowing flooding or ruptures (Morrison 2021).

2.2  Data Sources

Publicly available data for historic leak occurrences in LA City were extracted from a 
published online mapping application from the Los Angeles Times (Poston and Stevens 
2015). From available data, a total of 4,174 occurrences of leaks in LA City between 2010 
and 2013 were obtained. Each record, mapped as a point, contained the address, date of 
the reported leak (day/month/year), pipe age, leak type, and pipe material (Fig. 2). Leak 
records were imported into ArcGIS and mapped with LA City boundaries.

Previous studies on pipe failures have shown that environmental and engineering factors 
can influence WDN leaks (Barton et al. 2019). However, WDNs and other infrastructures 
are examples of socio‑technical systems. Studies on hazards and disasters have indicated 
that social vulnerability and community resilience should be considered when evaluating 
the impact of infrastructure failures (Fan et al. 2022; Rahimi‑Golkhandan et al. 2022; Da 
Silveira and Mata‑Lima 2021; Hani et  al. 2023). Therefore, data from multiple sources, 
including leak occurrences, socioeconomic characteristics, land use, engineering param‑
eters, and climate, were integrated as explanatory factors used in the statistical and predic‑
tive procedures in this study. Potential explanatory factors and their corresponding data 
sources were described as follows:

1. Geographic factors: longitude and latitude. Data were acquired from LA County’s geo‑
spatial database (LA County 2023).

2. Socioeconomic factors constituted by (1) household demographic variables: area, house‑
holds, average household size, percentage of building age by constructed year, and 
percentage of vacancy. The building age was divided into three groups: constructed 
before 1959, during 1960–1999, and after 2000; and (2) sociodemographic variables: 
population density, percentages of residents by age groups, percentage of residents by 
race and ethnicity, unemployment rate, median household income, percentage of renters, 
percentage of low birth weight, and CalEnviroScreen (CES) 2.0 score. The percentage of 
age was divided into three groups: age under 18, 18–64, and over 65. Race and ethnicity 
were divided into three groups: white, black and African American, and Hispanic or 
Latino.

  Socioeconomic data were collected from the American Community Survey (U.S. Cen‑
sus Bureau 2023) and the California Office of Environmental Health Hazard Assessment 
(OEHHA 2022). The CES 2.0 score is a summary index of social and environmental 
vulnerability for all census tracts in California.

3. Environmental factors: climatic zone, average maximum temperature, precipitation, and 
percentage for relative prevalence of ozone, Particulate Matter 2.5 (PM2.5), drinking 
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water quality, traffic, threats to groundwater as a drinking water source, impaired water 
bodies, and proximity and exposure of solid waste.

  Environmental data were obtained from two sources: local weather monitoring sta‑
tions and climate zone designations from the California Energy Commission (CEC 
2021) and local climate data that are contained within UCLA’s Energy Atlas (Pincetl 
and LA Energy Atlas Development Team 2023). Temperature and precipitation data 
were derived from 17 weather stations near LA City.

Fig. 2  Reported leak events in the City of Los Angeles. Shaded regions indicate municipal territories. A 
portion of the larger Los Angeles County boundary is also shown on the left of the map. (Data sources: 
Krishnakumar and Poston (2016); Poston and Stevens (2015); Picture source: Reyes‑velarde (2018); Map 
created by authors)
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4. Engineering factors: mean elevation, soil type, pipe material, and average pipe age. Data 
on mean elevation and soil type were also downloaded from the geospatial database of 
LA County (LA County 2023). The pipe material and average pipe age were calculated 
based on the leakage data downloaded from the Los Angeles Times.

2.3  Evaluating the Validity of Using Socioeconomic Factors for Leak Occurrence

We developed a model with MLR to evaluate the relative influence of potential explana‑
tory factors. The objective is to determine whether some set of appropriate socioeconomic 
and urban planning characteristics influence WDN leak occurrence and should be included 
alongside engineering factors in predictive modeling. First, the number of observed leaks 
and the failure rate (leaks per 1000 connections) in a census tract were calculated. The 
failure rate calculation standardized the outcomes for population differences across cen‑
sus tracts. Outliers were removed over the 99th percentile (approximately 68 observed 
leaks per 1000 connections). Second, the number of failures and the failure rate were plot‑
ted against the composite indicator of socioeconomic vulnerability, the CES 2.0 score, to 
assess the overall trends. Third, potential predictive factors of leak events were estimated 
for census tracts to analyze trends in detail with predictive factors. The engineering opera‑
tional parameters that could influence the rate of observed leaks included mean elevation 
and pipe age in a census tract. Other potentially important factors, such as system pres‑
sure or pipe diameter, were not available for large enough portions of pipes associated 
with leaks. The underlying socioeconomic and demographic parameters that make up the 
dataset were also extracted to be included in the database. Finally, a statistical model was 
developed to relate how the number of observed leaks (the number of failures and the fail‑
ure rate) in a census tract varies based on explanatory variables of operational, geographic, 
and socioeconomic factors at the census tract level.

For the outcome variable of observed leaks per 1000 connections in a census tract, a 
linear model was constructed in R. The model included explanatory variables of poverty 
rate (those living below two times the federal poverty level), the percentage of low‑income 
households, a ranking of drinking water quality based on 10 indicator contaminants con‑
tained within CES, total land area, median household income, mean elevation, and average 
pipe age within a census tract. Multicollinearity tests using a variable inflation factor (VIF) 
were performed to evaluate multicollinearity between the explanatory variables.

2.4  Identifying Clusters of Leaks from Existing data

We performed a cluster analysis to determine whether the observed leaks were randomly 
distributed in space and whether the occurrence of leaks exhibited non‑random clustering, 
which may indicate influential factors to correlate with WDN or metropolitan characteris‑
tics. Spatial clusters are defined as areas with significantly higher events than the average 
or higher risks of consequences than the expected value (Roushangar et al. 2022).

Scan statistic is a widely used method for detecting spatial clusters. This method has 
been used in many disciplines, including disease, criminology, and disaster risk evalua‑
tion (Wadhwa and Thakur 2022; Mondal et al. 2022; Stimers et al. 2022). Robertson and 
Nelson (2010) compared the popular spatial cluster detection software programs and dem‑
onstrated that the scan statistic method had a more robust performance in automatically 
detecting clusters, among others.
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The scan statistic software (SaTScan) calculated statistical significance based on data 
from each zone. A null hypothesis that assumed the risk of the population within a given 
area being affected by potential leaks is randomly distributed was adopted. A more detailed 
description is shown in Supplemental Data.

1. Calculate the expected leak occurrence: The distribution of leaks under the null hypoth‑
esis was estimated. The expected number of leaks was the fraction of leaks that fall 
within the scan window, assuming a uniform distribution of leaks. The population den‑
sity ratio in the scan window was relative to the entire LA City as a proxy for associated 
infrastructure and, assuming that leaks were randomly distributed, the expected number 
of leaks.

2. Identify the scan window size: The spatial scan window in SaTScan was a circle, vary‑
ing from 0 to a maximum size. SaTScan identified clustering in events by identifying 
the regions of the dataset with multiple events within a scan window across windows 
of many sizes. The scan window size in the spatial analysis was set as 50% (Kulldorff 
2022). The centroids of the block groups, which were the middle point of the polygon, 
served as the center point of the scan window.

3. Estimate the likelihood ratio: For a given scan window size, a test statistic was used to 
compare the number of observed and expected leaks inside and outside the window. 
The discrete Poisson probability model was chosen (Kulldorff 2022).

  The likelihood ratio, which was based on the probability model, was calculated for 
each scan window and reflected the possibility that the window contained a cluster. High 
likelihood ratio values represented windows with a great likelihood of continuing leak 
clusters. SaTScan reported the logarithm of likelihood ratio (LLR).

4. Test for statistical significance: SaTScan used Monte Carlo analysis to test for the sig‑
nificance of identified clusters. SaTScan generated a series of randomly distributed leaks 
and then calculated the maximum LLR for each leak. If the LLR of the scan window set 
was ranked at R, then its significance p = R / (N + 1), where N was the total number of 
Monte Carlo replications (Kulldorff 2022). Small p-values indicate that the probability 
of the clustering being random was small. In this study, the number of Monte Carlo 
replicates was set to 9999 to gain a steady result (Bailony et al. 2011). The significance 
level was p ≤ 0.05.

2.5  Predictive Modeling to Evaluate Contributing Factors of Leak Risk

The ML technique is increasingly important in the analysis of modeling failure risk in 
WDNs (Li et al. 2022; Mazumder et al. 2021; Fan et al. 2022). Compared with single ML 
methods, such as support vector machines and decision trees, ensemble learning combines 
results from multiple weak learners to improve prediction. In addition, ensemble learning 
provides more explanation regarding the model structure, strategies, and mechanism explo‑
rations (Diamantopoulou 2023; Tripathi et al. 2023).

We addressed classification problems where the inputs were conducted by m‑dimensional 
explanatory factors. The output, that is, the target variables, showed whether a census block 
group should be classified as a high‑risk leak cluster (labeled with 1) or non‑cluster (labeled 
with 0).

The predictive process was divided into four steps: scenario modeling, training and 
cross‑validation (CV), model testing and evaluation, and key explanatory factor extraction.
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2.5.1  Scenario Modeling

Two scenarios were conducted in this study: the interpolation prediction scenario (IPS) and 
the extrapolation prediction scenario (EPS). IPS randomly selected 80% of the samples for 
training and CV. The remaining 20% of the samples were used for testing. Then, EPS used 
2010–2011 explanatory factors and 2011–2012 labels for training and CV and then tested 
on 2011–2012 explanatory factors and 2012–2013 labels, with a one‑year interval.

2.5.2  Training and CV

This procedure identified which ML models were appropriate for leakage prediction based 
on three models, which were evaluated for effectiveness: logistic regression (LR), random 
forest (RF), and gradient boosting decision tree (GBDT). The mechanism of each model is 
briefly described in Supplemental Data.

The models’ performance was judged by a 10‑fold CV. The model to be adopted was 
determined by CV results because the validation set was an invisible set to the model.

2.5.3  Model Testing and Evaluation

The models were tested with the two prediction scenarios. In addition, six performance 
metrics, that is, accuracy, precision, recall, F1 score, the area under the curve, and Brier, 
were calculated. A detailed description of metrics and corresponding equations are con‑
cluded in Supplemental Data.

2.5.4  Extraction Key Explanatory Factors

Recursive feature elimination (RFE) was proposed to find the key factors from the estab‑
lished ML prediction model (Guyon et al. 2002). The basic steps are described as follows: 
train the classifiers, calculate the ranking criterion for all features, and remove the features 
with the minimum ranking criteria. We used a 10‑fold RFE CV to obtain the key feature 
combinations. F1 score was chosen as the performance metric.

3  Results

The results are presented below for (1) trends in leak events, (2) regression models to eval‑
uate the validity of using socioeconomic factors to understand leak occurrences, (3) analy‑
sis of spatial clustering of reported leak events, and (4) key explanatory factors of leak 
risks based on predictive modeling.

3.1  Frequency of Leak Occurrence

There were identifiable spatial and temporal trends among the 4,714 leakage incidents 
that occurred during the study period (Fig. S1 and Tables S1 and S2 in Supplemental 
Data). The number of leaks in a month fluctuated from 52 to 243, with an average of 
98 leaks. Leaks occurred more often in December and January compared with other 
months. These totals were more than twice the values in March, April, May, and June. 
A small difference existed between summer and autumn occurrences, which are warm 
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seasons in Southern California’s Coastal Mediterranean climate. However, minimal dif‑
ferences existed in the number of reported leaks across each year. The greatest number 
of leaks occurred in 2011 (1,317), followed by 2010 (1,159), whereas the number of 
leaks was equal in 2011 and 2013 (1,119).

3.2  MLR Models to Evaluate Sociodemographic Factors

With trends in clusters identified, MLR was used to explore the validity of constructing 
a predictive model for WDN leak risks that include sociodemographic factors. Plotting 
the number of failures and the failure rate (per 1,000 connections) against the overall 
index of socioeconomic vulnerability yielded opposite results. The number of failures 
and the CES score were positively correlated, whereas areas with high CES scores (low 
risk) had high failures. Alternatively, areas with high CES scores were inversely corre‑
lated with the rate of failures per 1000 connections (Fig. 3). Census tracts in CES with 
low scores (indicating less risk) tended to have a high failure rate. The main reason is 
that these areas have few WDN connections, which is a function of urban planning and 
density. The areas are less “dense,” not having as many properties per unit area. The 
negative relationship between failure rate and density indicates that although a dense 
area with many connections and pipes should have high failures, the rate of increase in 
failures is less than expected.

The model with MLR (r2 = 0.17) provided further insight into the observed trends in 
failure rates (Table 1). The typical operational indicators of elevation and pipe age were 
statistically significant, with elevation being negatively correlated and pipe age being 
positively correlated with the failure rate. Multiple socioeconomic indicators were also 
significantly correlated, including poverty rate (positive), indicators of drinking water 
quality (positive), area (positive), and population (negative). A VIF calculation for the 
model indicates low to moderate levels of multicollinearity, with values ranging from 
1.06 to 2.95. The results provide evidence for the use of socioeconomic characteristics 
as potential predictive factors of WDN leak occurrences.

Fig. 3  Comparing the number of observed failures and the failure rate (per 1000 connections) in a census 
tract to its CES ranking. Lower rankings indicate the most vulnerable census tracts
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3.3  Spatial Clustering

Statistically significant clusters of leaks (p ≤ 0.05) were found throughout the region 
(Fig. 4). With census blocks as the smallest unit, the proportion of high‑risk leakage blocks 
in LA City from 2010 to 2013 was 32.64%, 29.07%. 23.67%, and 26.19%, respectively. 
Downtown and southwest LA City were high‑risk areas for WDN leaks.

3.4  Prediction Modeling

CV analysis revealed the algorithms that most accurately predicted leaks in the training 
set (Fig. S2 in Supplemental Data). The difference in CV scores between RF and GBDT 
was small; hence, both models were selected as the proposed models. In the test set, the 
RF model outperformed the GBDT model in all performance metrics in IPS and EPS 
(Table 2). The RF model was selected as the most suitable model and further calculated for 
feature selection.

Feature selection identified the explanatory factors of EPS leaks because it was greatly 
practical for predicting future leakage clusters. A total of 10 major factors were extracted: 
10% related to geography (latitude and longitude), 30% to sociodemography (median 
household income, percentage of Hispanic or Latino population, and CES 2.0 Score), 40% 
to the environment (average maximum temperature, precipitation, percentage of ozone, and 
percentage of PM2.5), and 10% to engineering (mean elevation). The removal of multicol‑
linearity among explanatory variables following RFE resulted in a small boost in the RF 
model’s performance metrics on EPS. Its accuracy was 94.25% after three‑quarters of the 
features were eliminated.

Figure 5 shows a comparative analysis of differences between the predicted results of con‑
sidering and not considering socioeconomic factors. Evidently, the prediction performance 
decreased by approximately 10% on IPS and EPS. This result corresponded in part with the 
statistical analysis using MLR in that the high risk of WDN leaks can be explained by multiple 
factors that include engineering and socioeconomic indicators. In other words, the results from 
this study indicate that leak risk may not necessarily result from a single type of influence, 

Table 1  Statistical outputs from MLR, for the outcome variable of observed WDN leaks in a census tract 
per 1,000 connections (r2 = 0.17, F-statistic = 20.07 on 8 & 786 Degrees of Freedom) 

** significant at 0.01 level; *** significant at < 0.001 level

 Explanatory Variable Coefficient Standard Error t-value

Intercept ‑1.01e + 00 2.59e + 00 ‑0.391
Poverty rate** 7.64e‑02 2.50e‑02 3.054
Low‑income household burden ‑4.51e‑02 5.21e‑02 ‑0.867
Indicators of adequate drinking water 

quality***
8.03e‑02 1.87e‑02 4.288

Area** 6.38e‑07 2.00e‑07 3.192
Population*** ‑1.64e‑03 2.87e‑04 ‑5.732
Median Household Income 2.51e‑05 1.33e‑05 1.89
Mean Elevation*** ‑3.45e‑03 1.02e‑03 ‑3.377
Average Pipe Age*** 1.17e‑01 1.72e‑02 1.97e‑11
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Fig. 4  Spatial location of Clusters of high leakage risk clusters (in brown) and non‑clusters (in yellow) 
identified in LA City
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such as engineering operations. Rather, leak risk may relate to the many ways that infrastruc‑
ture and operations are influenced by socioeconomic and climatic influences. Some additional 
parameters of interest, such as pipe pressure zones or pipe sizes, were not included owing to 
the lack of data but could be incorporated in future studies.

We further provided the leakage clustering prediction results for 2013 and 2014 and com‑
pared the 2013 prediction results with the actual clusters (Fig. 4). Owing to the limited amount 
of leakage data available, that is, only leakage data from 2010 to 2013 were disclosed, we 
could only provide short‑term predictions with one‑year intervals. The validation in 2013 
showed that 88.51% of the census block group matched the actual leakage clusters, indicating 
the practical application of the predictive model. The prediction result in 2014 showed that 
the leakage risk was more severe than that in 2013, reaching 28.59%. If utilities could further 
open leakage point data over the years, then this model can be used for long‑term leakage 
clustering prediction by adjusting the interval years.

Table 2  Prediction of leak events 
based on performance measures

IPS RF GBDT EPS RF GBDT

Accuracy (%) 93.29% 92.29% Accuracy (%) 92.45% 88.19%
Precision (%) 88.95% 86.70% Precision (%) 89.96% 82.20%
Recall (%) 86.71% 85.46% Recall (%) 78.47% 67.15%
F1 Score (%) 93.27% 92.28% F1 Score (%) 92.27% 87.76%
AUC 0.9128 0.9020 AUC 0.8778 0.8116
BS 0.0540 0.0562 BS 0.0568 0.0839

Fig. 5  Comparative analysis of differences between the predicted results of considering and not considering 
socioeconomic factors
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4  Discussion

The results show that prediction modeling can help utilities develop asset management 
programs that proactively engage in operations and maintenance activities before dam‑
age occurs. The analysis illustrated how a collection of socioeconomic and environmental 
variables could be used to identify geographic clusters of leaks. Working in geographic 
areas can have tangible benefits, such as cost savings by minimizing mobilization costs and 
travel time between work sites for field crews.

The results are subject to several limitations. The publicly accessible data were 
restricted from 2010 to 2013, constraining future leakage predictions. The associated 
repair time for LADWP was included in the data set. However, entries for many records are 
missing (23.3%), which inhibits including repair time in the analysis. Additional granular 
data for socioeconomic and engineering operations could refine results. In addition, this 
study focuses on two classification problems. If continuous leak observation data can be 
obtained, then the regression model in ML technology can be performed.

Leaks in urban water systems cost utilities time and money. In California, statewide reg‑
ulations have focused on improving efficiency and reducing leaks in cities. For instance, 
the California Senate Bill (SB) 1420 in 2014 required urban water supplies to begin sub‑
mitting annual water loss audits with regular reporting on system‑wide operations. Subse‑
quently, in 2015, SB 555 required urban water supplies to submit validated, detailed audits 
of losses. As agencies expand efforts to improve water use efficiency beyond indoor and 
outdoor conservation, advanced methods for leak loss prediction based on openly available 
data can reduce the cost of implementing leak loss reduction programs.

5  Conclusions

This study analyzed spatially explicit explanatory and predictive factors in observed high‑
risk leakage clusters in LA City using multiple quantitative and modeling procedures. The 
primary contributions are as follows:

1. This study greatly broadens and deepens the understanding of how socioeconomic fac‑
tors affect the spatial leakage clusters of WDN. Following Fan et al. (2022), this study 
proposes a multi‑source dataset and further enriches the socioeconomic factors with 
significant effects on WDN leakage. Census tracts in the socioeconomic vulnerability 
index with less risk tended to have a high failure rate.

2. The best‑performed RF model successfully predicted high‑risk leakage clusters in 2013 
and could be employed to predict for the upcoming year. This model was thoroughly 
validated and compared on two scenarios with six performance metrics. The prediction 
period can be longer by adjusting EPS interval years if the utilities publish more open 
leakage data.

3. This study identified significant socioeconomic factors. The outcomes of the compari‑
son analyses also demonstrated that considering socioeconomic factors had a positive 
impact on prediction accuracy. The contributions of the engineering and environmental 
factors were in line with the findings of previous studies. This finding implies that non‑
traditional factors—that is, socioeconomic ones—have a significant impact on WDN 
leakage, which can be useful in explaining observed leak loss occurrence in urban areas.
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Complicated non‑linear interactions among multiple components lead to WDN leakage. 
Future research should consider advanced ML methods and further information collection 
to increase the accuracy of WDN leakage predictions. As cities target programs to reduce 
water losses in distribution systems, data‑driven studies combining engineering, environ‑
mental, and socioeconomic data can help inform utility management. Such studies may 
also potentially facilitate a move toward decision support for proactive management with 
sustainability goals.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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