UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

UCMERCED DRINKING WATER FACTSHEET GETTING YOUR WATER TESTED

Factsheet Drinking Water Series - #2

Find Your Water Provider

Public water systems provide water to homes and businesses, ranging from a few dozen to thousands of residents. If you live in urban or suburban areas, your drinking water likely comes from a public system and is treated before it reaches your home. Many residents who live outside urban areas, however, get water from state small water systems or private, domestic wells. Residents who receive water from these types of sources may not have resources to treat water to safe standards. Additionally, wells may be located near sources of pollution. To learn where your water comes from, use the QR code to link to an interactive map developed by the **Community Water Center**. [1]

Is My Water Safe?

Large water systems are required to regularly test water to ensure quality. If you live in an area served by a larger water supplier, you can find water quality test results from your provider. Follow the the QR code here to see if your water quality complies with water quality standards. [2]

If you live outside of a water system boundary, the best way to know your drinking water quality is to get your water tested by an independent laboratory. You can drop off or mail a sample of your water at the laboratory and have your water tested for common contaminants. Household water quality tests can cost up to \$200. Follow the QR code to the right to find a water quality testing lab near you. A lot of county environmental or health departments have programs for discounted water testing. **Check with their county first!**

Water Quality Check Up

Lab Locations

Contaminants

Contaminants can affect human health, or the taste, odor, or color of water. Drinking water quality standards protect the public from health impacts caused by contaminants. They are monitored based on water parameters, including:

Biological

Bacteria, parasites, and viruses (like E.coli and Giardia) originate from many pollutant sources, like water runoff containing manure from animals. Illnesses that can result include intestinal issues, infections, and respiratory problems.

Turbidity

Turbidity is a measure of water clarity. Water with high turbidity appears cloudy due to small sediment and particles (solids) in the water.[4]

Metals

Metals are naturally present in all waterbodies due to the geology of the local area, but higher concentrations of metals are commonly a result from humancaused pollution. [5]

рН

pH is a measure of acidity in water. A pH value less than 7.0 is more acidic water, while pH values greater than 7.0 indicate more alkaline, or basic, water.[6]

Chemical

Chemicals as a byproduct of industrial activity like, agriculture or manufacturing, commonly leach into water sources.

Pg. 1

Website: https://fews-us.org/ Email: cnaughton2@ucmerced.ed Number: (209) 259-8651

Em Nu

Website: https://ciwr.ucanr.edu Email: anrwater@ucanr.edu Number: (530) 240-2612

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

UCMERCED

DRINKING WATER FACTSHEET GETTING YOUR WATER TESTED

Factsheet Drinking Water Series - #:

How to Interpret Results

The figure below is an excerpt from the Consumer Confidence Report (CCR) Water Quality Report from the City of Merced [7]. Explore the data below to learn how to interpret water quality test results and understand if your water is safe for drinking.

Maximum Contaminant Levels (MCLs)

MCLs are protective standards established by regulations, which public water systems must meet. An MCL is set based on health risks, detectability, treatability, and costs for treatment for a contaminant. [8]

Public Health Goals (PHGs)

PHGs reflect the level of contaminants in drinking water that pose no significant health risk if consumed for a lifetime. PHGs are established using risk assessment principles and by knowing the costs and health risks associated with contaminants, but are not legally enforceable for public water systems. [8]

Relationship Between MCLs and PHG

A Public Health Goal is first established for a contaminant based on known scientific data, followed by an enforceable Maximum Contaminant Level. MCL requirements are established as close to PHGs as possible, but may surpass PHGs.

List of Contaminants

Primary Drinking Standards

Primary drinking water standards protect public health by limiting the levels of contaminants in drinking water that pose significant health risks. [9]

Secondary Drinking Standards

Secondary standards include contaminants that may affect cosmetic or aesthetic characteristics of drinking water (taste, smell, color) [10]

REGULATED CONTAMINANTS levels of contaminants in drinking	WITH PR water. The	IMARY DR next Regul	INKING WA	TER STAN	NDARDS: E	nforceable scheduled f	standards and treatment techniques to protect public health by limiting the or 2025.
SUBSTANCE	YEAR	MCL	PHG (MCLG)	AVERAGE	RANGE		
(UNIT OF MEASURE)	SAMPLED	[MRDL]	[MRDIG]	DETECTED	LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic¹ (ug/L)	2022	10	0.004	3.5	ND - 7.7	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (mg/L)	2022	1	2	0.21	0.07 - 0.47	No	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Chlorine (mg/L)	2022	[4.0 (as Cl2)]	[4.0 (as Cl2)]	0.71	0.28 - 1.04	No	Drinking water disinfectant added for treatment
Chromium [Total] (ug/L)	2022	50	(100)	0.99	ND - 16	No	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Fluoride (mg/L)	2022	2	1	0.11	ND - 0.18	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2017/2022	15	(0)	2.6	ND - 9.2	No	Erosion of natural deposits.
Gross Beta Particle Activity ² (pCi/L)	2017/2022	50	(0)	6.1	ND - 11	No	Decay of natural & man-made deposits.
Radium 226 (Ra 226) (pCi/L)	2022	5	0.05	0.01	ND11	No	Erosion of natural deposits.
Nitrate ³ (as N) (mg/L)	2022	10	10	2.4	0.93 - 5.0	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natu- ral deposits
Tetrachloroethylene [PCE] 4 (ug/L)	2022	5	0.06	0.26	ND - 2.2	No	Discharge from factories, dry cleaners, and auto shops (metal degreaser)
Total Trihalomethanes [TTHM] (ug/L)	2022	80	N/A	0.25	ND - 1.0	No	Byproduct of drinking water disinfection
Uranium (pCi/L)	2022	20	0.43	2.07	ND - 8.7	No	Erosion of natural deposits.
REGULATED CONTAMINANTS	S WITH SE	CONDARY	ORINKING	WATER S	TANDARD	S: There are	e no PHGs, MCLGs, or mandatory standard health effects language for these contami-
nants because secondary MCLs are s	et on the bas	is of aestheti	c concerns.				
SUBSTANCE	YEAR	MCL	PHG (MCLG)	AVERAGE	RANGE		
(UNIT OF MEASURE)	SAMPLED	(INIKDL)	[IVIRDLG]	DETECTED	LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chloride (mg/L)	2022	500	NS	8.5	3.1 - 15	No	Runoff/leaching from natural denosits: seawater influence
Color (Units)	2022						tunion caching non-matural acposito, scawater innacrice
	2022	15	NS	4.7	ND - 10	No	Naturally occurring organic materials
Copper (mg/L)	2022	15 1.0	NS NS	4.7 0.30	ND - 10 ND 0.0065	No No	Naturally occurring organic materials Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits.
Copper (mg/L) Corrosivity ⁵ (Units)	2022 2022 2022	15 1.0 Non- corrosive	NS NS NS	4.7 0.30 12	ND - 10 ND 0.0065 11 - 13	No No No	Naturally occurring rotation opposite, semantic innovation Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Natural or industrially influenced balance of hydrogen, carbon and oxygen in the water, affected by temperature and other factors
Copper (mg/L) Corrosivity ⁵ (Units) Odor—Threshold	2022 2022 2022 2022 2022	15 1.0 Non- corrosive 3 Units	NS NS NS NS	4.7 0.30 12 0.05	ND - 10 ND 0.0065 11 - 13 ND - 1.0	No No No	Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Natural or industrially influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors Naturally occurring organic materials
Copper (mg/L) Corrosivity ⁵ (Units) Odor—Threshold pH, Laboratory	2022 2022 2022 2022 2022 2022	15 1.0 Non- corrosive 3 Units 6.5 - 8.5	NS NS NS NS	4.7 0.30 12 0.05 8.0	ND - 10 ND - 0.0065 11 - 13 ND - 1.0 7.6 - 8.2	No No No No	Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Natural or industrially influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors Naturally occurring organic materials Low pH: bitter metallic taste, corrosion. High pH: slippery feel, soda taste; deposits
Copper (mg/L) Corrosivity ⁵ (Units) Odor—Threshold pH, Laboratory Sulfate (mg/L)	2022 2022 2022 2022 2022 2022 2022	15 1.0 Non- corrosive 3 Units 6.5 - 8.5 500	NS NS NS NS NS NS	4.7 0.30 12 0.05 8.0 8.9	ND - 10 ND - 0.0065 11 - 13 ND - 1.0 7.6 - 8.2 2.1 - 12	No No No No No	Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Natural or industrially influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors Naturally occurring organic materials Low pH: bitter metallic taste, corrosion. High pH: slippery feel, soda taste; deposits Runotfikeaching from natural deposits; industrial wastes
Copper (mg/L) Corrosivity ⁵ (Units) Odor—Threshold PH, Laboratory Sulfate (mg/L) Specific Conductance (µSiom)	2022 2022 2022 2022 2022 2022 2022 202	15 1.0 Non- corrosive 3 Units 6.5 - 8.5 500 1600	NS NS NS NS NS NS NS	4.7 0.30 12 0.05 8.0 8.9 350	ND - 10 ND - 0.0065 11 - 13 ND - 1.0 7.6 - 8.2 2.1 - 12 170 - 640	No No No No No No	Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Natural or industrially influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors Naturally occurring organic materials Low pH: bitter metallic taste, corrosion. High pH: slippery feel, soda taste; deposits Runotf/leaching from natural deposits; industrial wastes Substances that form ions when in water; seawater influence
Copper (mgL) Corrosivity ⁵ (Units) Odor—Threshold pH, Laboratory Sulfate (mgL) Specific Conductance (µSiom) Total Dissolved Solids (mgL)	2022 2022 2022 2022 2022 2022 2022 202	15 1.0 Non- corrosive 3 Units 6.5 - 8.5 500 1600 1000	NS NS NS NS NS NS NS NS	4.7 0.30 12 0.05 8.0 8.9 350 248	ND - 10 ND - 0.0065 11 - 13 ND - 1.0 7.6 - 8.2 2.1 - 12 170 - 640 150 - 400	No No No No No No No	Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Natural or industrially influenced balance of hydrogen, carbon and oxygen in the water; affected by lemperature and other factors Naturally occurring organic materials Low pH: bitter metallic taste, corrosion. High pH: slippery feel, soda taste; deposits Runoffleaching from natural deposits; industrial wastes Substances that form ions when in water; seawater influence Runoffleaching from natural deposits
Copper (mg L) Corrosivity ⁵ (Units) Odor—Threshold pH, Laboratory Sulfate (mg L) Specific Conductance (µSicm) Total Dissolved Solids (mg/L) Turbidity (NTU)	2022 2022 2022 2022 2022 2022 2022 202	15 1.0 Non- corrosive 3 Units 6.5 - 8.5 500 1600 1000 5 Units	NS NS NS NS NS NS NS NS NS	4.7 0.30 12 0.05 8.0 8.9 350 248 0.28	ND - 10 ND - 0.0065 11 - 13 ND - 1.0 7.6 - 8.2 2.1 - 12 170 - 640 150 - 400 ND - 1.6	No No No No No No No No	Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Natural or industrially influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors Naturally occurring organic materials (Low pH: bitter metallic taste, corrosion. High pH: slippery feel, soda taste; deposits Runoff/leaching from natural deposits; industrial wastes Substances that form ions when in water; seawater influence Runoffleaching from natural deposits Soil nuoff
Copper (mg L) Corrosivly ⁵ (Units) Odor—Threshold pH, Laboratory Sutifate (mg L) Specific Conductance (µSicm) Total Dissolved Solids (mg/L) Turbidity (NTU) Tap water samples were collect	2022 2022 2022 2022 2022 2022 2022 202	15 1.0 Non- corrosive 3 Units 6.5 - 8.5 500 1600 1000 5 Units ad and cop	NS NS NS NS NS NS NS Per analyse	4.7 0.30 12 0.05 8.0 8.9 350 248 0.28 s from hot	ND - 10 ND - 0.0065 11 - 13 ND - 1.0 7.6 - 8.2 2.1 - 12 170 - 640 150 - 400 ND - 1.6 useholds m	No No No No No No No No No	Naturally occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Naturaly occurring organic materials Naturally occurring organic materials Low pH: bitter metallic taste, corrosion. High pH: slippery feel, soda taste; deposits Runoffleaching from natural deposits; industrial wastes Substances that form ions when in water; seawater influence Runoffleaching from natural deposits Soli nuoff
Copper (mg L) Corresivity ⁵ (Units) Odor—Threshold pH, Laboratory Sudrate (mg L) Specific Conductance (µSicm) Total Dissolved Solids (mg L) Turbidity (NTU) Tap water samples were collect SUBSTANCE (UNIT OF MEASURE)	2022 2022 2022 2022 2022 2022 2022 202	15 1.0 Non- corrosive 3 Units 6.5 - 8.5 500 1600 1000 5 Units ad and cop	NS NS NS NS NS NS NS Per analyse PHG (MCLG)	4.7 0.30 12 0.05 8.0 8.9 350 248 0.28 st from hot AVERAGE DETECTED 90TH %TILE	ND - 10 ND - 0.0065 11 - 13 ND - 1.0 7.6 - 8.2 2.1 - 12 170 - 640 150 - 400 ND - 1.6 useholds m SITES ABOVE AL/ TOTAL SITES	No No No No No No No No VIOLATION	Autority occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Naturaly occurring organic materials Internal corrosion of household plumbing systems; erosion of natural deposits. Naturaly occurring organic materials Low plumbit and other factors Naturally occurring organic materials Low plu: bitter metallic taste, corrosion. High plus sippery feel, soda taste; deposits Raturality occurring organic materials Low plus bitter metallic taste, corrosion. High plus sippery feel, soda taste; deposits Raturaly occurring organic materials Substances that form ions when in water; seawater influence Runoffleaching from natural deposits Soli nuoff terfia within city limits. The next Lead & Copper event is scheduled for 2024. TYPICAL SOURCE
Copper (mg L) Corresivity ⁵ (Units) Odor—Threshold pH, Laboratory Sulfate (mg L) Specific Conductance (µSicm) Total Dissolved Solids (mg L) Turbidity (NTU) Tap water samples were collect SUBSTANCE (UNIT OF MEASURE) Copper (mg L)	2022 2022 2022 2022 2022 2022 2022 202	15 1.0 Non- corrosive 3 Units 6.5-8.5 500 1600 1000 5 Units id and cop AL 1.3	NS NS NS NS NS NS NS Per analyse PHG (MCLG) 0.3	4.7 0.30 12 0.05 8.0 8.9 350 248 350 248 sfrom hot AVERAGE DETECTED 90TH %TILE 0.16	ND - 10 ND - 0.0065 11 - 13 ND - 1.0 7.6 - 8.2 2.1 - 12 170 - 640 150 - 400 ND - 1.6 useholds m SITES ABOVE AL/ TOTAL SITES 0/31	No No No No No No No No VIOLATION No	Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Naturaly occurring organic materials Internal corrosion and other factors Naturally occurring organic materials Low pH: bitter metallic taste, corrosion. High pH: slippery feel, soda taste; deposits Runoffleaching from natural deposits; industrial wastes Substances that form ions when in water; seawater influence Runoffleaching from natural deposits Soli runoff teria within city limits. The next Lead & Copper event is scheduled for 2024. YPICAL SOURCE Internal corrosion of nousehold plumbing systems; erosion of natural deposits; leaching from wood preservalves

Website: https://fews-us.org/ Email: cnaughton2@ucmerced.edu Number: (209) 259-8651

Pg. 2