# The use of Sulfur Dioxide and Controlled Atmospheres to Increase San Joaquin Valley Grown Blueberry Cultivars Market Life





Celia M. Cantin & Carlos H. Crisosto

Department of Plant Sciences

University of California

- Introduction & Objective
- Material & Methods
- Results
- Conclusions



# Introduction

- Special category of functional foods because of their combination of nutrient richness & antioxidant strength
- Good source of antioxidants: prevention of several chronic diseases, coronary heart disease, stroke and certain types of cancer
- Highly perishable, susceptible to rapid spoilage and have a short market shelf life

# Objective

 Extending the shelf life of fresh blueberries without a decrease in their postharvest quality, antioxidant and sensorial properties



Sulfur dioxide
Controlled atmospheres

# Material & Methods

8 commercial cultivars

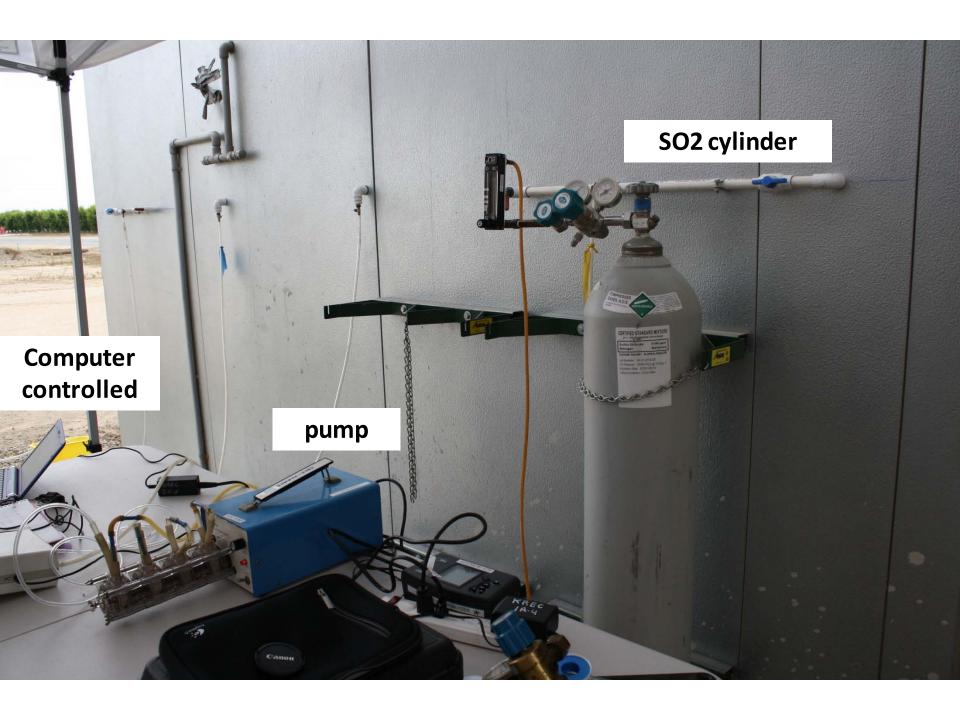
- **SO<sub>2</sub>** fumigated (100 CT) or not
- 5 storage atmospheres
  - Control (air)
  - 3% CO2
  - 6% CO2
  - 12% CO2
  - 24% CO2

10 treatments x 8 cultivars

# Quality evaluation at harvest

# **SO2** fumigation






#### Place boxes on a sealed container

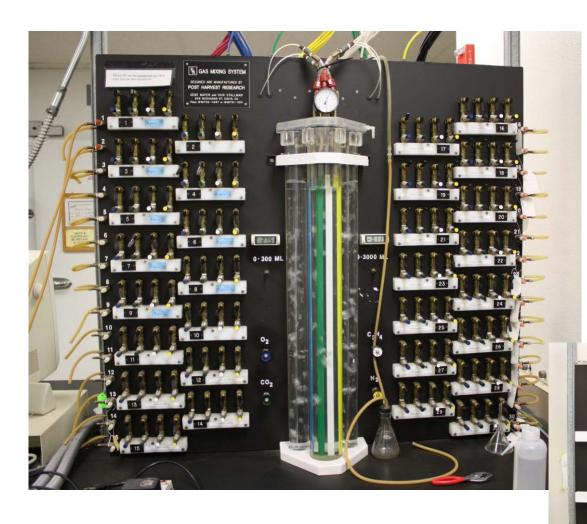


#### Place the sealed container in a cold room





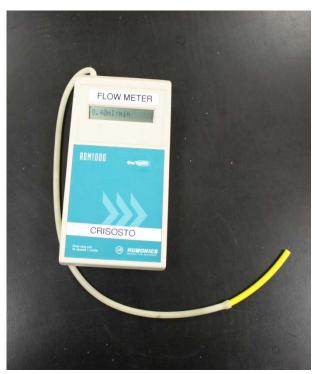
### Quality evaluation at harvest


SO2 fumigation

Storage at 1C in air or controlled atmosphere



# **Mixing board**


ENVIRONMENTAL ROOMS




3% O2 + 3%, 6%, 12% and 24% CO2

#### Flow meter





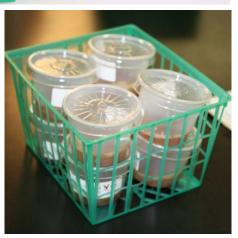
Change the atmosphere every 8h



#### Quality evaluation at harvest

SO2 fumigation

Storage at 1C in air or controlled atmosphere

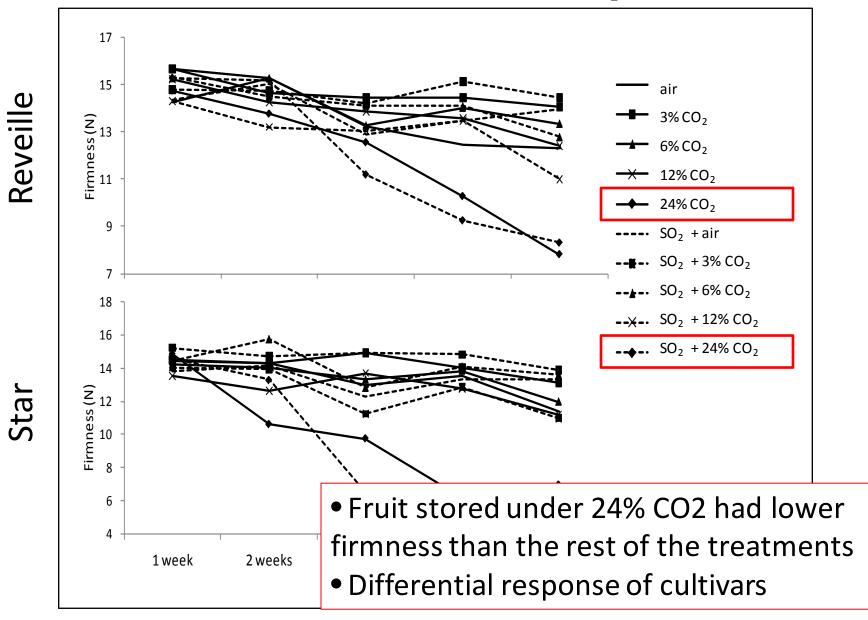



Fruit quality evaluation

# Quality evaluation after 1, 2, 3, 4 and 5 weeks of cold storage

- Firmness
- SSC
- Titratable acidity
- Weight loss
- Shriveling
- Decay (%)
- Pathogens identification
- Off flavors (sensory evaluation)






# Results

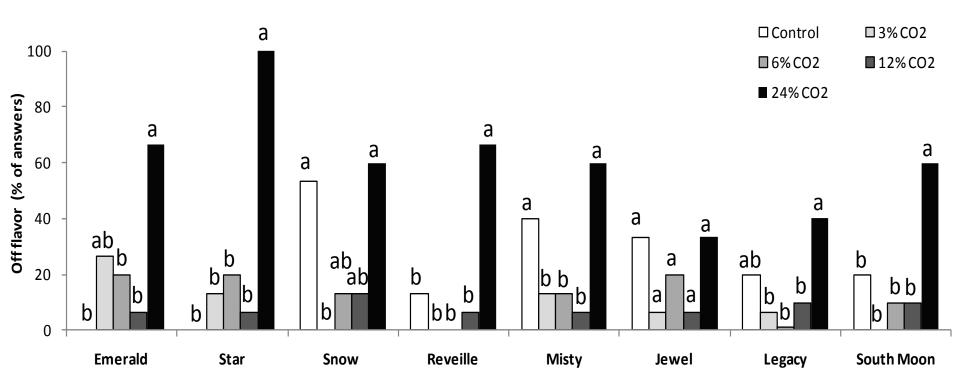


#### **Firmness**

 $SO_2(C \times t)$  100 (mL/L)-h

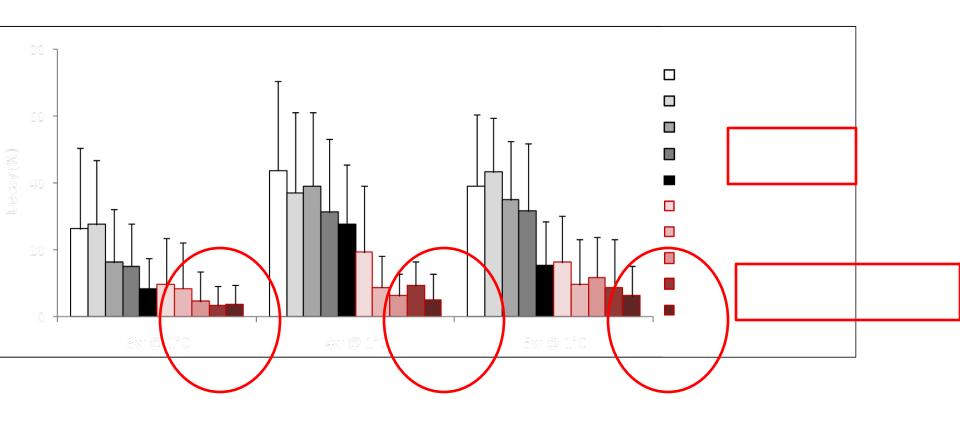


#### SSC and TA


- No significant effect of treatment was found for SSC and TA
- A slight increase in pH was found under CA

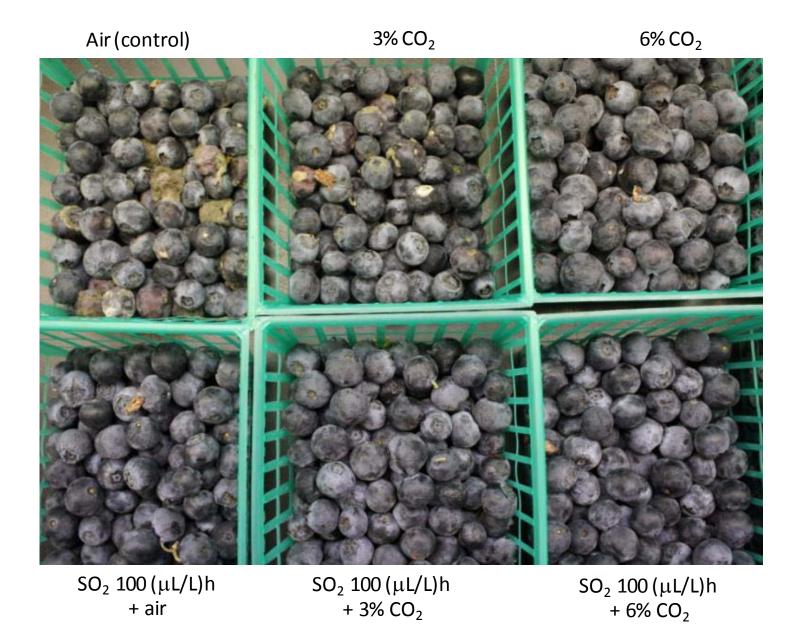





# 'Off flavor'

#### After 5w of cold storage



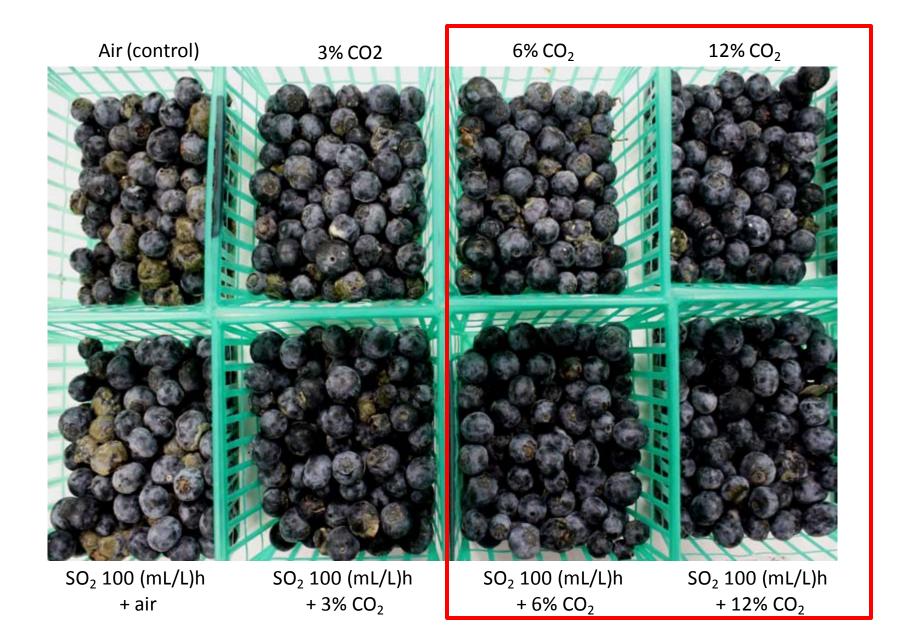

24% CO<sub>2</sub> atmospheres induced the formation of off flavors in the fruit

# Decay (%)



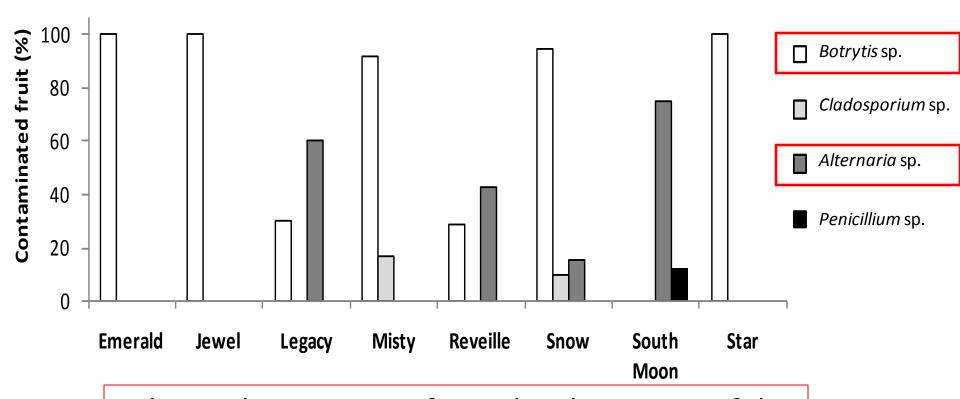
A combination of SO<sub>2</sub> with high CO2 CA during storage was the best treatment to control decay

# Reveille after 5w cold storage + 3d shelf life




# Reveille




Air + SO2

#### Snow after 5w cold storage + 3d shelf life



# **Pathogens**

after 5w at 1°C + 3d at 20°C



When isolation was performed in the interior of the berries, *B. cinerea* and *Aureobasidium pullulans* were the most common pathogens

# **Antioxidants**

| Treatment                      |                      | TPC<br>(mg GA/<br>100 g FW)         |     | THA<br>(µg caffeic acid/<br>100 g FW) |       | TF<br>(mg rutin/<br>100 g FW) |      | TA<br>(mg cyanidin/<br>100 g FW) |      | FRAP<br>(mmol AsA/<br>100 g FW) |     |                 |  |        |    |       |    |      |   |      |   |      |    |
|--------------------------------|----------------------|-------------------------------------|-----|---------------------------------------|-------|-------------------------------|------|----------------------------------|------|---------------------------------|-----|-----------------|--|--------|----|-------|----|------|---|------|---|------|----|
|                                |                      |                                     |     |                                       |       |                               |      |                                  |      |                                 |     | After 1w at 1°C |  |        |    |       |    |      |   |      |   |      |    |
|                                |                      |                                     |     |                                       |       |                               |      |                                  |      |                                 |     | air             |  | 145.25 | ab | 138.1 | ab | 35.6 | а | 88.0 | а | 70.5 | ab |
| 6 % CO <sub>2</sub>            |                      | 136.9                               | bc  | 126.6                                 | bc    | 34.5                          | ab   | 70.0                             | ab   | 71.3                            | ab  |                 |  |        |    |       |    |      |   |      |   |      |    |
| 12 % CO <sub>2</sub>           |                      | 124.4                               | С   | 119.5                                 | С     | 29.9                          | b    | 65.9                             | b    | 64.9                            | b   |                 |  |        |    |       |    |      |   |      |   |      |    |
| SO <sub>2</sub> 100 (μL/L) h + | 6 % CO <sub>2</sub>  | 133.8                               | bc  | 127.3                                 | bc    | 31.6                          | ab   | 68.7                             | ab   | 69.7                            | ab  |                 |  |        |    |       |    |      |   |      |   |      |    |
| SO <sub>2</sub> 100 (μL/L) h + | 12 % CO <sub>2</sub> | 153.4                               | а   | 148.1                                 | а     | 36.6                          | а    | 79.6                             | ab   | 78.6                            | а   |                 |  |        |    |       |    |      |   |      |   |      |    |
| After 3w at 1°C                |                      |                                     |     |                                       |       |                               |      |                                  |      |                                 |     |                 |  |        |    |       |    |      |   |      |   |      |    |
| air                            |                      | 165.7                               | а   | 157.2                                 | а     | 38.3                          | а    | 68.3                             | а    | 89.5                            | а   |                 |  |        |    |       |    |      |   |      |   |      |    |
| 6 % CO <sub>2</sub>            |                      | 162.7                               | а   | 166.0                                 | а     | 39.5                          | а    | 97.2                             | а    | 88.9                            | а   |                 |  |        |    |       |    |      |   |      |   |      |    |
| 12 % CO <sub>2</sub>           |                      | 175.8                               | а   | 168.4                                 | а     | 40.8                          | а    | 101.1                            | а    | 92.5                            | а   |                 |  |        |    |       |    |      |   |      |   |      |    |
| SO <sub>2</sub> 100 (μL/L) h + | 6 % CC               | NO CONSISTENT ANTICES WERE OBSEIVED |     |                                       |       |                               |      |                                  |      |                                 |     |                 |  |        |    |       |    |      |   |      |   |      |    |
| SO <sub>2</sub> 100 (μL/L) h + | 12 % C               |                                     |     |                                       |       |                               |      |                                  |      |                                 |     |                 |  |        |    |       |    |      |   |      |   |      |    |
| After 5w at 1°C                |                      | be                                  | etw | een ti                                | reatr | nent                          | s or | n the a                          | antı | oxid                            | ant |                 |  |        |    |       |    |      |   |      |   |      |    |
| air                            |                      | properties of any cultivar studied  |     |                                       |       |                               |      |                                  |      |                                 |     |                 |  |        |    |       |    |      |   |      |   |      |    |
| 6 % CO <sub>2</sub>            |                      | 100.0                               | •   | 170.1                                 | a     | 30.0                          | au   | 01.Z                             | a    | 30.0                            | a   |                 |  |        |    |       |    |      |   |      |   |      |    |
| 12 % CO <sub>2</sub>           |                      | 150.3                               | а   | 140.4                                 | b     | 32.4                          | b    | 73.4                             | а    | 78.1                            | b   |                 |  |        |    |       |    |      |   |      |   |      |    |
| SO <sub>2</sub> 100 (μL/L) h + | 0.04.00              | 154.9                               | _   | 174.4                                 | _     | 34.5                          | L    | 93.9                             | _    | 100.4                           |     |                 |  |        |    |       |    |      |   |      |   |      |    |

142.2 b

38.6 ab

83.4 a

90.1 ab

SO<sub>2</sub> 100 (μL/L) h + 12 % CO<sub>2</sub>

156.7 a

# Conclusions

- 6% and 12% CO2 were the best CA treatments to reduce decay and increase the shelf life of fresh blueberries
- The combination with SO<sub>2</sub> improved the effect of CA
- very high levels of CO<sub>2</sub> (24%) should be avoided to prevent softening and/or 'off-flavors'
- CA + SO<sub>2</sub> reduced the growth of pathogens
- no negative effects of SO<sub>2</sub>
   + CA were observed on the berry quality and phytochemical content



# Thanks to...

- Manuel Jimenez
- Carlos H. Crisosto
- Ioannis Minas
- George Manganaris
- Vlassios Goulas



Questions?