#### **Timing of Silage Harvest**





Dairy Nutabolism Lab
School of Vet Med, UC Davis

# 1.Why?2.When?3.How?

#### **1.Why?**

### Nutrient content Digestibility Silage quality

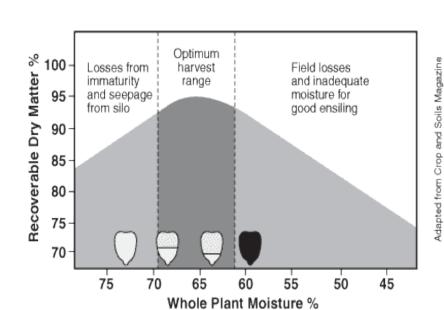

#### 1.Why? Nutrients

Table 3. Plant composition and energy yield of whole plant corn silage harvested at three different stages of maturity.<sup>1</sup>

| <b>Maturity Grain</b>     | DM   | Stover | Sugar | Starch | TDN/Acre <sup>2</sup> |  |  |
|---------------------------|------|--------|-------|--------|-----------------------|--|--|
| Percent, Dry Matter Basis |      |        |       |        |                       |  |  |
| 1/3 milk line             | 32.4 | 59.1   | 9.8   | 22.2   | 7.2                   |  |  |
| 2/3 milk line             | 41.8 | 50.2   | 7.1   | 28.4   | 7.8                   |  |  |
| black layer               | 46.1 | 45.8   | 6.6   | 31.0   | 7.7                   |  |  |
|                           |      |        |       |        |                       |  |  |

<sup>&</sup>lt;sup>1</sup> Average of six hybrids, two locations.

<sup>&</sup>lt;sup>2</sup> Tons of total digestible energy per acre, dry matter basis.



#### 1.Why? Nutrients

TABLE 1. Chemical composition and characteristics of corn silage as affected by maturity.

|                                         |                  |      |      |        | Maturity <sup>1</sup> |      |      |      |
|-----------------------------------------|------------------|------|------|--------|-----------------------|------|------|------|
| Item                                    | $Study^2$        | Milk | ED   | 1/4 ML | ⅓ ML                  | ½ ML | ⅔ ML | BL   |
| % DM Whole plant                        | 1                |      | 30.1 | 32.4   |                       |      | 35.1 | 42.0 |
| •                                       | 2                |      |      |        |                       | 35.7 |      | 45.1 |
|                                         | 3                |      |      |        | 31.7                  |      | 39.1 | 45.4 |
|                                         | 4                | 20.4 | 28.5 |        |                       |      |      | 43.5 |
|                                         | 5                | 20.3 | 28.9 |        |                       |      |      | 45.1 |
| % DM Kernels                            | 2                |      |      |        |                       | 55.4 |      | 61.4 |
| CP, %DM                                 | 1                |      | 7.5  | 7.3    |                       |      | 7.1  | 7.0  |
| ,                                       | 2                |      |      |        |                       | 8.4  |      | 8.9  |
|                                         | 4                | 9.5  | 9.2  |        |                       |      |      | 8.3  |
|                                         | 5                | 9.2  | 7.6  |        |                       |      |      | 6.9  |
| NDF, %DM                                | 1                |      | 52.0 | 44.4   |                       |      | 40.5 | 41.3 |
| , , , , , , , , , , , , , , , , , , , , | 2                |      |      |        |                       | 45.0 |      | 44.0 |
|                                         | 3                |      |      |        | 46.3                  |      | 43.8 | 44.5 |
|                                         | 4                | 63.5 | 51.8 |        |                       |      |      | 45.7 |
|                                         | 5                | 65.1 | 54.6 |        |                       |      |      | 51.7 |
| ADF, %DM                                | 1                |      | 32.0 | 27.1   |                       |      | 23.9 | 24.2 |
| illi, willi                             | 2                |      |      |        |                       | 27.0 |      | 26.0 |
|                                         | 3                |      |      |        | 27.0                  |      | 25.3 | 25.5 |
|                                         | 4                | 34.6 | 38.5 |        |                       |      | 20.0 | 21.8 |
|                                         | 5                | 36.7 | 29.4 |        |                       |      |      | 28.3 |
| Starch, %DM                             | 1                |      | 18.2 | 28.7   |                       |      | 37.2 | 37.4 |
| Startii, WDW                            | 2                |      |      |        |                       | 32.0 |      | 35.0 |
|                                         | 3                |      |      |        | 22.2                  |      | 28.4 | 31.0 |
| Lignin, %DM                             | 1                |      | 3.3  | 2.8    |                       |      | 2.9  | 2.7  |
| Lignin, %DM                             | $\overset{1}{2}$ |      |      |        |                       | 3.6  |      | 4.9  |
|                                         | 3                |      |      |        | 3.0                   |      | 2.8  | 3.0  |
|                                         | 4                | 5.7  | 4.4  |        |                       |      |      | 3.1  |
|                                         | 5                | 6.4  | 4.4  |        |                       |      |      | 5.3  |
|                                         | ย                | 0.4  | 4.0  |        |                       |      |      | 0.0  |

<sup>&</sup>lt;sup>1</sup>ED = Early dent, ML = milkline, BL = blackline.

<sup>&</sup>lt;sup>2</sup>Data for study 1 2 3 4 and 5 were from Ballet al. (2) Harrison et al. (11) Hunt et al. (18) Xu et al.

#### 1.Why? Nutrients

TABLE 2. Dry matter intake, milk production, milk component yield, and digestibility of nutrients as affected by maturity of corn silage.

|                    |                      |                   | Maturity (% of Blackline response) <sup>1</sup> |              |                    |                 |  |
|--------------------|----------------------|-------------------|-------------------------------------------------|--------------|--------------------|-----------------|--|
| Item               | Reference            | ED                | ½ ML                                            | ½ ML         | % ML               | BL<br>(kg or %) |  |
| DMI, kg            | Bal et al. (2)       | 100               | 100                                             |              | 100                | 25.6            |  |
| , 0                | Harrison et al. (11) |                   |                                                 | 103          |                    | 20.2            |  |
| Milk, kg           | Bal et al. (2)       | $99^{\mathrm{b}}$ | $100^{ m ab}$                                   |              | $102^{\mathrm{a}}$ | $32.7^{ m ab}$  |  |
| , 0                | Harrison et al. (11) |                   |                                                 | $107^{c}$    |                    | $20.1^{ m d}$   |  |
| Milk fat, %        | Bal et al. (2)       | 102               | 101                                             |              | 97                 | 3.52            |  |
|                    | Harrison et al. (11) |                   |                                                 | $94^{\rm g}$ |                    | $3.91^{ m f}$   |  |
| Fat yield, kg      | Bal et al. (2)       | 102               | 99                                              |              | 99                 | 1.15            |  |
| • , 0              | Harrison et al. (11) |                   |                                                 | 101          |                    | 0.78            |  |
| Milk protein, %    | Bal et al. (2)       | 100               | 100                                             |              | 101                | 3.48            |  |
|                    | Harrison et al. (11) |                   |                                                 | 98           |                    | 3.55            |  |
| Protein yield, kg  | Bal et al. (2)       | $99^{ m d}$       | $99^{ m d}$                                     |              | $104^{c}$          | $1.13^{ m d}$   |  |
|                    | Harrison et al. (11) |                   |                                                 | $106^{ m h}$ |                    | $0.70^{i}$      |  |
| Starch intake, kg  | Bal et al. (2)       | 81                | 92                                              |              | 100                | 9.0             |  |
|                    | Harrison et al. (11) |                   |                                                 | 100          |                    | 4.4             |  |
| Total tract starch |                      |                   |                                                 |              |                    |                 |  |
| digestibility, %   | Bal et al. (2)       | $107^{\rm e}$     | $106^{ m cd}$                                   |              | $105^{ m d}$       | 88 <sup>e</sup> |  |
| _                  | Harrison et al. (11) |                   |                                                 | $110^{c}$    |                    | $87^{ m d}$     |  |

<sup>&</sup>lt;sup>a,b</sup>Values within a row differ (P < 0.07).

 $<sup>^{</sup>c,d,e}$ Values within a row differ (P < 0.05).

f,gValues within a row differ (P < 0.01).

#### 1.Why? Digestibility

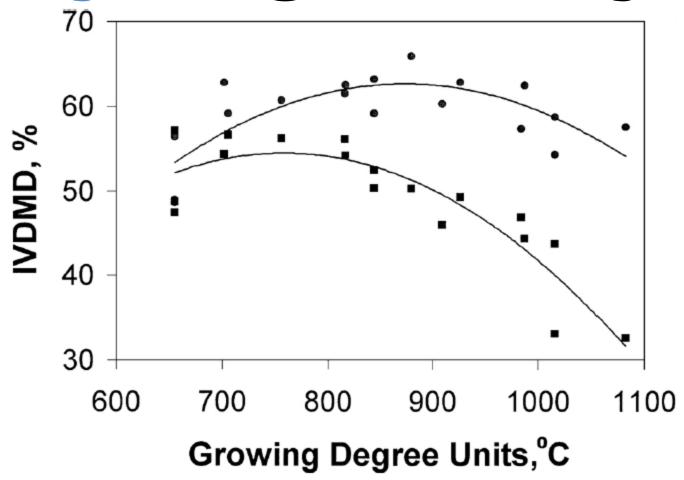



Figure 1. The effect of growing degree units on whole plant ( $\bullet$ ) and stover ( $\blacksquare$ ) in vitro DM digestibility. Whole plant,  $Y = -0.0002x^2 + 0.3415x - 86.40$ ,  $r^2 = 0.5621$ . Stover,  $Y = -0.0002x^2 + 0.3309x - 71.032$ ,  $R^2 = 0.8055$ . Adapted from Xu et al. (42).

#### 1.Why? Digestibility

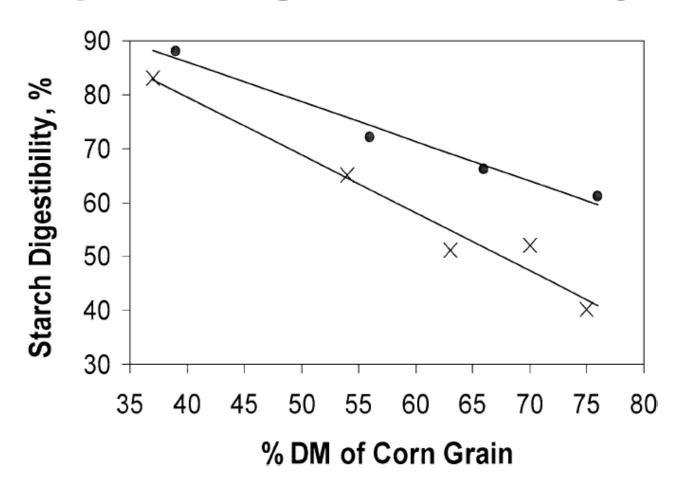



Figure 2. The effect of DM content of corn grain on in situ ruminal starch digestibility. Legend: Dent ( $\bullet$ ), and Flint (X). Equations: Dent, Y = -0.7349x + 115.29,  $r^2 = 0.977$ , Flint, Y = -1.0768x + 122.59,  $r^2 = 0.9624$ . Adapted from Philippeau and Michalet-Doreau (28).

#### 1.Why? Digestibility

Table 4. Effect of harvest stage on yield and quality of corn silage.

| Maturity stage | Moist | DM yield | CP  | NDF  | Digestibility |
|----------------|-------|----------|-----|------|---------------|
|                |       | tons/Ac  | %   | %    | %             |
| Early dent     | 73    | 5.6      | 9.9 | 48.0 | 79.0          |
| ½ milkline     | 66    | 6.3      | 9.2 | 45.1 | 80.0          |
| 3/4 milkline   | 63    | 6.4      | 8.9 | 47.3 | 79.6          |
| No milkline    | 60    | 6.3      | 8.4 | 47.3 | 78.6          |

Source: Wiersma and Carter, University of Wisconsin, 1993.

#### 1.Why? Silage quality

**Target 30-35% DM** 

**Too Early < 29%** 

Low starch
Acetic acid > 4%
Ferment acids > 10%
Seepage

**Too Late >36%** 

Starch Digestibility
Acid Production low
Yeast inhibition
Packing

#### 2. When?

### Squeezing Milk line **Plant Growth** Dry Matter

#### 2. When? Squeezing



#### 2. When? Milk line

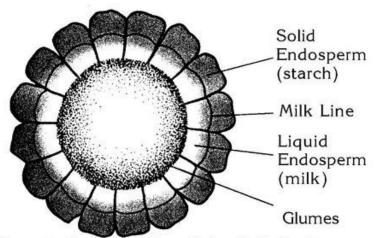
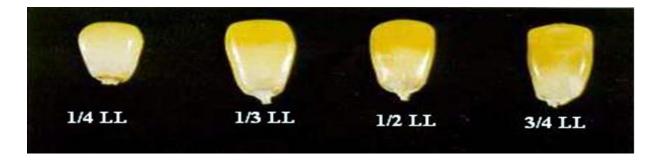
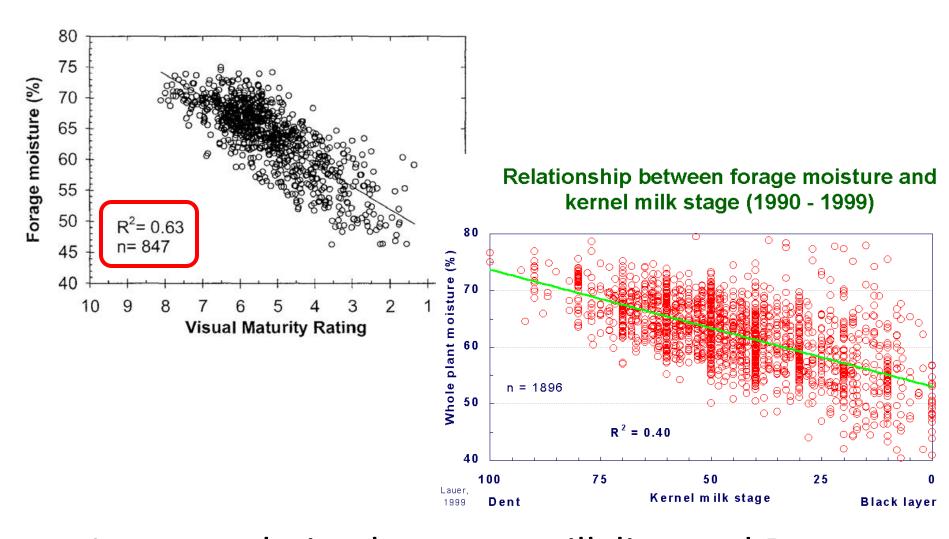





Figure 2. Cross section of the tip half of a corn cob showing milk line progression down the kernel.

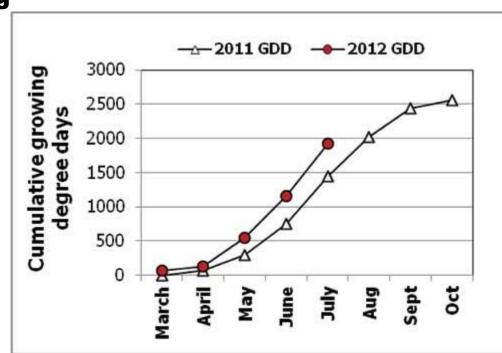




#### 2. When? Milk line



Low correlation between milk line and Dry Matter Content (Lauer 1999, 2006).


## 2. When? Plant Growth = days to tasseling, silking growing degree days

#### **Harvest Guidelines:**

Approximately 95-115 days after seeding After dent, dry down is 0.5-0.6% /d, above 40% DM dries faster Dent = 35-42 d after silking

**GDD** = (Tmax-Tmin)/2- 50; Tmax<86, Tmin>50

95-115 d = 2250-2500 GDD



#### 2. When? Plant Growth

# But still need to measure DM to time harvest

#### 2. When? Dry Matter

**Corn Silage** 

**Bunker** 

**Bags** 

**Cereals** 

**Grasses** 

**Alfalfa** 

Harvest stage %DM

1/2-2/3 milk line 32-38

**33-37** 

boot-dough 35-45

boot 35-45

bud-1/10 bloom 35-45





**33-35** 

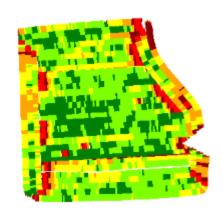
#### 3. How? Sampling

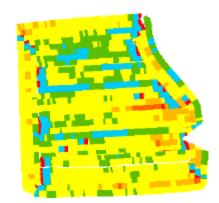
1) Take a representative sample, 10-20 plants per field

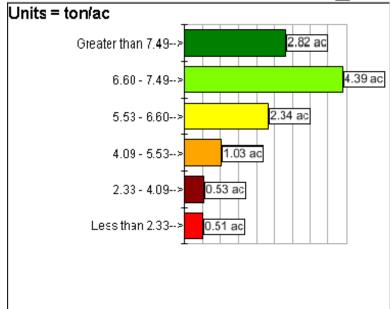


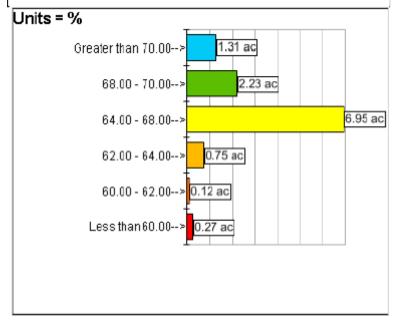





2) Hand feed the plant to a chopper, 3) Take a representative sample of the chopped material, keep cool


4)Use approximately 100 g for microwave oven for 40s or 200g for Koster tester Subtract 2%





#### 3. How? NIR Field Maps











#### Why?

Balance nutrient content, digestibility, yield and fermentative capacity.

#### When?

Start DM measurements at milk, early dent, silk (40d to dent), GDD (silk 1300-1400, harvest ~800)

How?

Dry Matter!, representative sample