Nitrogen Management in Walnuts

Katherine Jarvis-Shean
UCCE Sacramento, Solano & Yolo Counties

Nitrogen Management Overview

- Why is nitrogen important
- Nitrogen in soil, plant uptake
- Science

 Management

Walnut Nutrient Management Take Aways

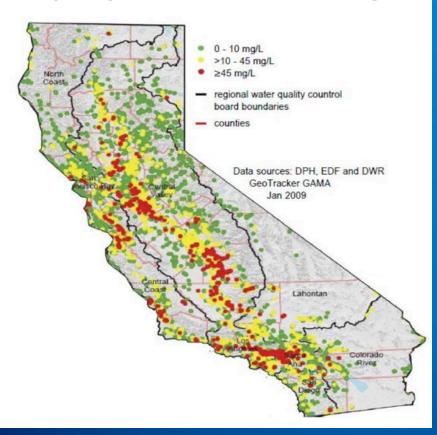
- 1) Minimum 29 lbs N / ton in-shell
- 2) Divide N evenly over growing season
- 3) Roots in top 2-3 feet
- 4) All N can turn to nitrate & leach

Why N is Important to Plants

- Most Used Mineral
 - 80% → Proteins
 - Also amino acids,
 DNA, hormones,
 chlorophyll, defense
 compounds

Why N is Important to Plants

- Deficiency: limits growth, leaf chlorosis
- High N:
 - Excess vegetative growth,
 - Delays leaf drop, dormancy
 - Increases disease susceptibility


Tulare on Paradox seedling. Photo: B. Lampinen

by frost. Photo, J. Hasey.

Impacts of Excess Nitrogen

30+% of wells over EPA limits

Images: Harter et al, 2012

To hit Nitrogen sweet spot...
Right amount to trees,
When they need it,
Where they can get it.

Helps to understand...
The **Different Forms** of N & **How N is Taken Up** by the Plant

Soil Organic Ammonium Nitrate (NH₄[†]) (NO₃⁻)

Soil Organic Matter

Ammonium (NH₄⁺)

Nitrate (NO₃⁻)

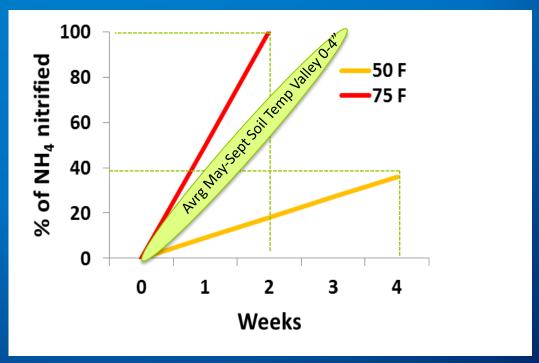
N tied up in organic molecules, not available to plants Roots can take up N as ammonium

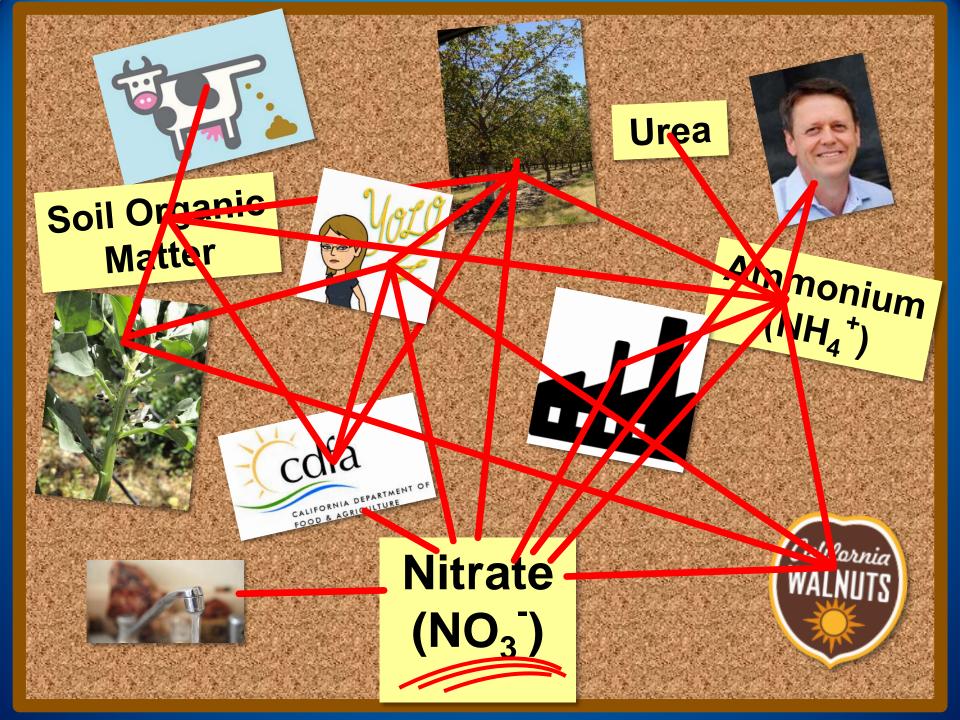
Roots can take up N as nitrate

Nutrient storage vault

Positivey charged → Can stick to the soil

Negatively
charged →
Will not stick to
the soil →
Can easily LEACH

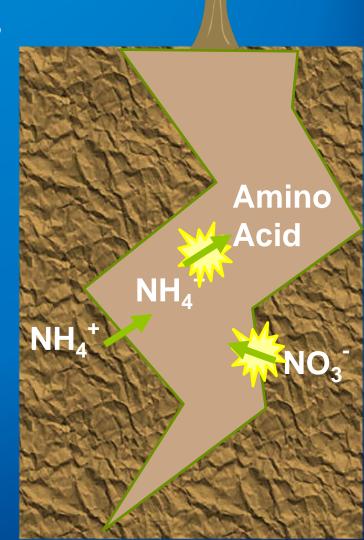

- In Calif. soils, SOM \rightarrow NH₄⁺: Weeks-Months
- Faster when moist, aerated, warm
- Organic Matter Amendment → SOM or NH₄⁺,
 < 2% N → N into SOM


- Nitrification →
- Rate depends on temperature
- Ammonium → Nitrate: Days-Weeks
- In California soils, if not taken up, most N eventually turns to nitrate

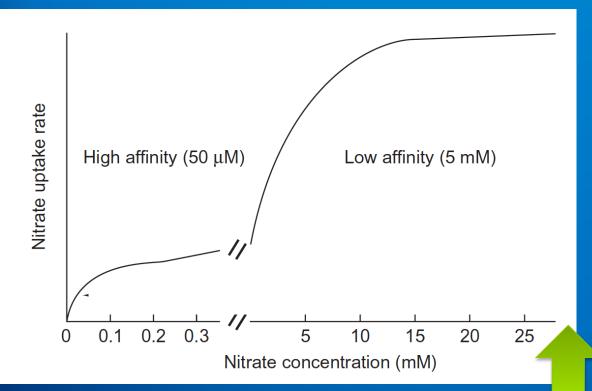
Soil Organic Matter Ammonium (NH₄⁺)

Nitrate (NO₃)

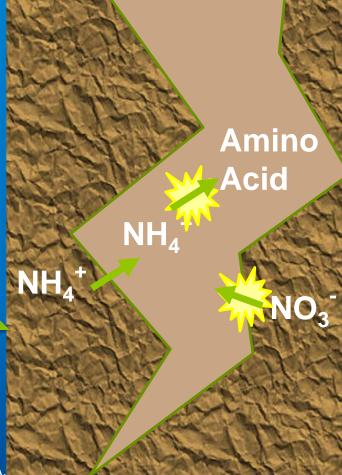
Elements of the Nature and Properties of Soils, 3/e by N. Brady and R. Well


Nitrogen Uptake by Plants

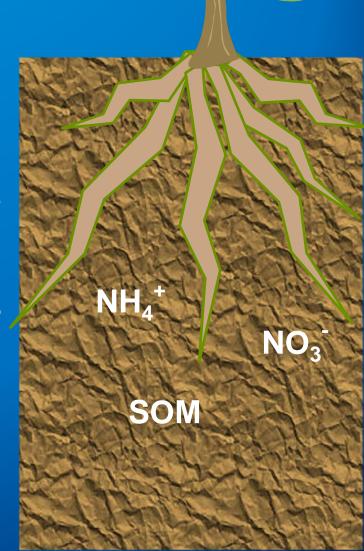
- Most Important to Know:
 - Nitrogen uptake is regulated because of energy use & transporter bottlenecks



Nitrogen Uptake by Plants


- Ammonium must → amino acids in roots because it's toxic
- Nitrate must be actively transported
- Both processes require energy, highly regulated
- Take Away: The tree will limit nitrogen uptake when beyond needs, to not waste energy.

Nitrogen Uptake by Plants


Nitrate concentration in a typical fertigation event

Nitrogen Dynamics Recap

- N in many forms in soil –
 SOM, Ammonium, Nitrate
 - SOM is N storage
 - Uptake as ammonium or nitrate.
 - Nitrate doesn't stick in the soil
- N uptake requires energy, goes through transporters.

More N applied ≠ More N uptake

Nitrogen Management Overview

- Why is nitrogen important
- Nitrogen in soil, plant uptake

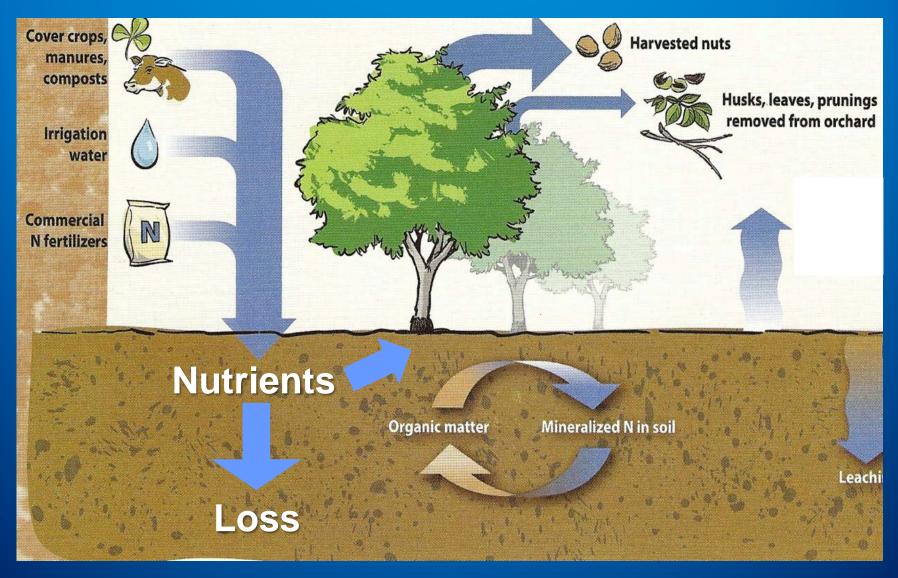
4 R's of N Management

Apply the RIGHT RATE

Apply at the RIGHT TIME

• Apply in the RIGHT PLACE

• Using the RIGHT SOURCE


N Management in General

- Apply the RIGHT RATE
 - Trees regulate N uptake
- Apply at the RIGHT TIME
 - Trees regulate N uptake
- Apply in the RIGHT PLACE
 - Keep it where roots can get it
- Using the RIGHT SOURCE
 - Keep it where roots can get it

4 R's of N Management

- Apply the RIGHT RATE
 - Match SUPPLY w/ tree DEMAND
 - Remember, N uptake costs energy.
 Trees minimize N uptake once N demand is met.
 - Fertilizer + organic N + water

Supply = Demand

Methods - NPK Demand Model

Right Rate

N / ton of nuts (in-shell, 8% moist)

Site	2013	2014	2015			
N Chandler	25	28	28			
C Chandler	29	30	34			
S Chandler	23	29	32			
N Tulare	27	29	23			
C Tulare	30	31	31			
S Tulare	26	27	35			
GRAND MEAN	29					

Meat & Shell: 23-35 lbs

Hulls: 0.5-2 lbs

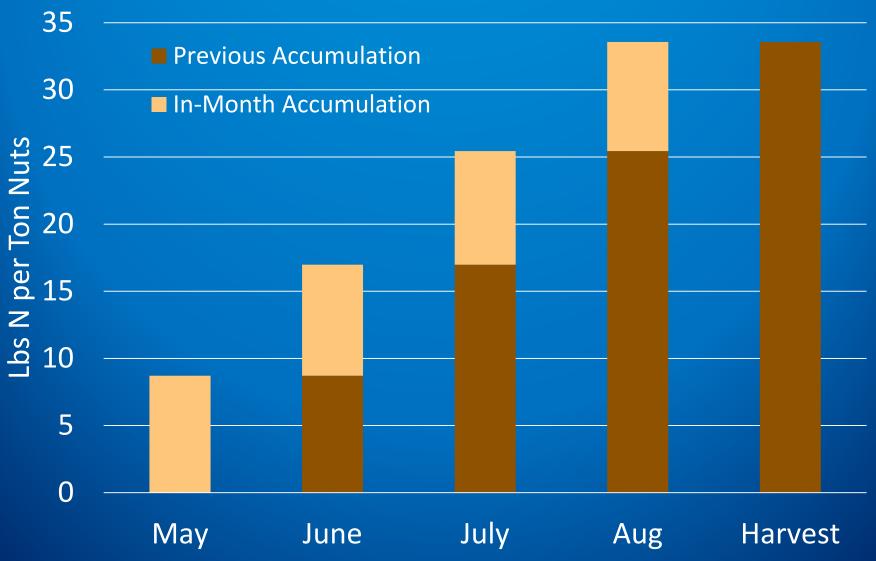
Other Scraps: 0.5-2 lbs (???)

New Growth: 4-8 lbs**(???)

28-47 lbs N / ton in-shell

^{*}Letters show dif's w/in cv.

^{**} Based on Weinbaum's 0.13 lb N/tree, 50 trees/acre, 16 year old Hartleys


N Management in Walnuts

- Apply the RIGHT RATE
 - Minimum 29 lbs/ton*
- Apply at the RIGHT TIME
- Apply in the RIGHT PLACE
- Using the RIGHT SOURCE

4 R's of N Management

- Apply at the RIGHT TIME
 - Match w/ timing of tree demand, root uptake
 - Remember, limited number of transporters. Bottleneck → Leaching.
 - Trees take up nutrients most efficiently when it's needed.

Nitrogen Added per Month 2013 - 2015, Chandler & Tulare

N Management in Walnuts

- Apply the RIGHT RATE
 - Minimum 29 lbs/ton
- Apply at the RIGHT TIME
 - Even split May-Aug
- Apply in the RIGHT PLACE

• Using the RIGHT SOURCE

4 R's of N Management

- Apply in the RIGHT PLACE
 - Delivery to active roots
 - N moves w/ water
 - Minimize movement below root zone
 - Remember, nitrate doesn't stick in the soil. Easily leached.

Roots in Top 3 Feet

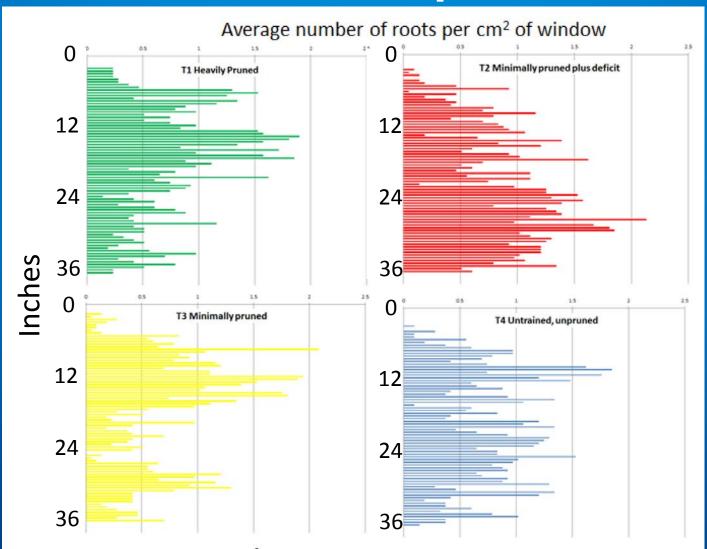


Fig. 3. Total number of roots per cm² of window area for the 2012 season by treatment.

N Management in Walnuts

- Apply the RIGHT RATE
 - Minimum 29 lbs/ton
- Apply at the RIGHT TIME
 - Even split May-Aug
- Apply in the RIGHT PLACE
 - Roots in top 3 feet
- Using the RIGHT SOURCE

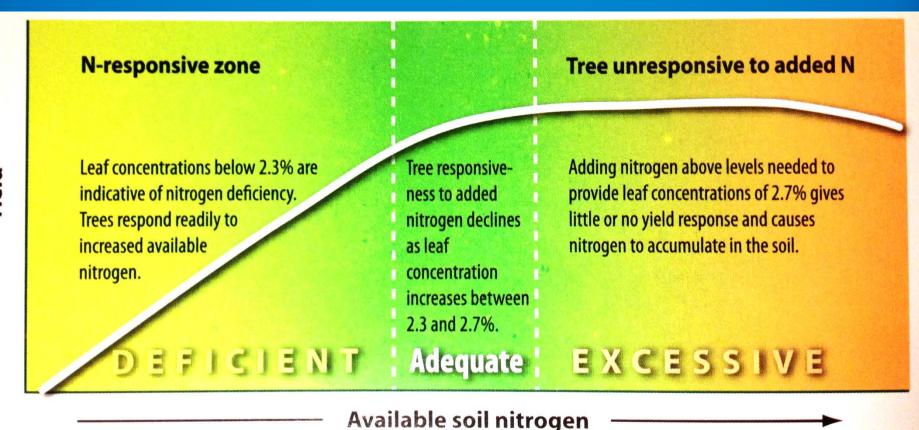
4 R's of N Management

Using the RIGHT SOURCE

Fertilizer	Nitrogen (%)	Urea	Ammonium	Nitrate	Leaching Potential	Soil Acidifier	Comments
Ammonium Nitrate	34%		/	/	Medium	Medium	Nitrate N immediately available. Ammonium N half delayed.
Ammonium sulfate	21%		/		Low	High	Source of sulfur
Calcium ammonium nitrate (CAN-17)	17%		/	/	Medium	Medium	
Calcium nitrate	16%			/	High	No	Source of calcium
Urea	45%	/		/	Low	Low	
Urea Ammonium Nitrate (UN-32)	32%	✓	✓	✓	Medium	Medium	Nitrate N immediately available. Remainder of N delayed.

N Management in Walnuts

- Apply the RIGHT RATE
 - Minimum 29 lbs/ton
- Apply at the RIGHT TIME
 - Even split May-Aug
- Apply in the RIGHT PLACE
 - Roots in top 3 feet
- Using the RIGHT SOURCE
 - -Most becomes Nitrate with time.


N Management in Walnuts

If based on yield history, this year's condition, you expect 3 ton crop, assuming 70% of N will get into the tree...

	Rate	Time	Place	Source
May	3 x 29 ÷ 0.7 = 124 lbs for whole season	31 lbs*	Manage irrigation to keep in top 3'	What works for your system? Remember, it can all → nitrate
June		31 lbs*		
July		31 lbs*		
August	Wildle Season	31 lbs*		

^{*}Nitrate in water,
N from compost,
+ synthetic N

Leaf Sampling

Leaf Sampling

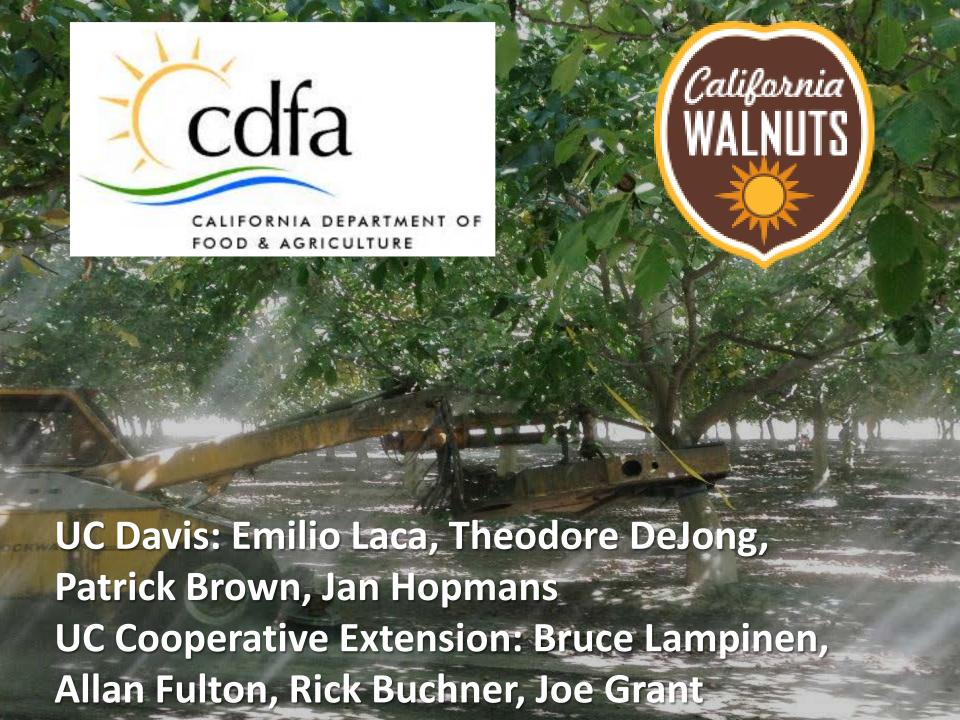

- Sample trees at least 30 yards apart
 - Closer are *likely* not independent (need tighter grid experiment to be sure)
- Sample 29 trees per block, assuming similar soil type throughout block
 - Achieves test results within 0.1% of the true orchard N status 95% of the time

Image: Kelley Anderson et al., 2006

Walnut Nutrient Management Take Aways

- 1) Minimum 29 lbs N / ton in-shell
- 2) Divide N evenly over growing season
- 3) Roots in top 2-3 feet
- 4) All N can turn to nitrate & leach

