

John J. Boland
The Johns Hopkins University
Baltimore, MD 21218
USA

Irvine, CA--19 August 2008

jboland@jhu.edu

Water Tariff

- A water tariff is the set of prices and charges for water and sanitation services
- The tariff is the means by which a water agency achieves fiscal sustainability
- Tariffs are also the principal tools for achieving certain management objectives:
 - Economic efficiency
 - Equity
 - Fairness
 - Affordability
 - Incentives for water conservation

Water Tariff (cont.)

- An "ideal" tariff would satisfy all of the various objectives
 - Also, it would be transparent, politically and socially acceptable, easy to implement, etc.
- In practice, however, there are significant conflicts
- Compromises between conflicting objectives are required
- Unfortunately, some widely accepted compromises may unnecessarily weaken the performance of water tariffs

Some Conflicts

- Examples of well-known conflicts:
 - Economic efficiency vs. fiscal sustainability (marginal cost vs. average cost pricing)
 - Equity vs. affordability (cost of service vs. ability to pay)
- We focus on the following conflict:
 - Resource conservation vs. affordability

[Attempts to use the tariff to promote efficient use of water may increase the cost burden on low-income households; attempts to aid low-income households may reduce the incentive for efficient use of water]

Affordability vs. Efficiency

Resource conservation

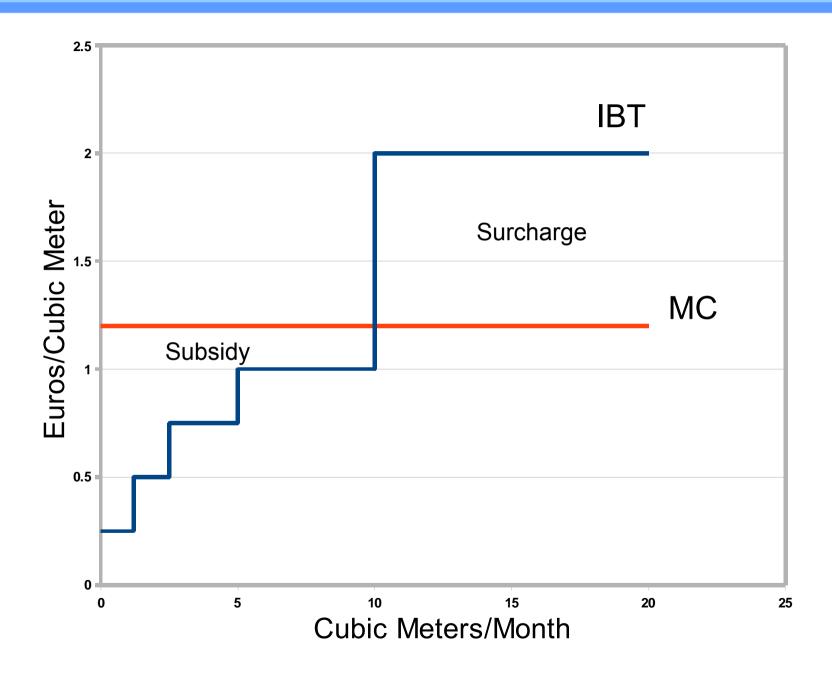
 In order to promote water conservation, each price should equal the marginal social cost

Common sense interpretation: the correct incentive for efficient use of water is to require each user to pay to replace the water used

Affordability

 For social and public health reasons, assistance should be provided to those households which have difficulty in paying, or are unable to pay

NOTE: This is a <u>household-level</u> problem, not a community-level problem



Affordability vs. Efficiency (cont.)

- The usual approach to this problem: adopt an increasing block tariff (IBT)
 - IBTs divide each household's monthly water use into a number of blocks (tranches), charging a different price for each block – the price increases as water use increases
 - The premise is that low-income households are low water users, so that they can purchase most or all of their water at the lowest prices
 - This is believed to subsidize low-income households while promoting conservation on the part of higher-income users

Increasing Block Tariff

/ IBT Critique

- ▶ IBTs do <u>not</u> promote water use efficiency
 - Some users face a price (at the margin) in excess of marginal cost
 - Others face a price below marginal cost
 - Therefore, some conserve too little and some too much – net effect is indeterminant
- IBTs do not provide appropriate subsidies for low-income users
 - To the extent that water use is positively correlated with income, the subsidy embedded in an IBT is limited in size and regressive with respect to income

1

A Better Alternative

- Uniform Tariff with Rebate (UTR)
- Example of UTR:
 - All water use: 1.2 E/cubic meter (MC)
 - Lump sum rebate: 10 E/month (could be larger; same subsidy to each targeted user)
- Compare to maximum subsidy for the IBT example shown here
 - Area marked "subsidy" = 7.14 €/month
 - IBTs produce much smaller subsidy for many
- UTR Subsidy can be targeted
 - Therefore, cost of subsidy can be less, even if subsidy is larger

A Better Alternative (cont.)

- UTR, as compared to IBT
 - Every user, regardless of size, pays a price equal to marginal social cost
 - Therefore, the conservation incentive is optimal
 - If the low-income users can be identified, the subsidy can be targeted to only those users
 - This greatly reduces the cost of the subsidy
 - Targeted users receive a fixed, non-regressive subsidy
 - This results in a low average cost of water service for these customers, although they still pay the optimal conservation price at the margin
 - UBTs are equitable and generally considered fair

Conclusions

- Properly designed water tariffs serve multiple, socially important objectives
- Many tariffs are not properly designed, failing to reasonably achieve one or more objectives
- Affordability is commonly invoked as a reason for adopting tariffs that are not fiscally sustainable, or that fail to achieve other objectives
- Since affordability is a household problem and not a community problem, there is no reason for affordability to conflict with fiscal sustainability

Conclusions (cont.)

- Where IBTs have been adopted in the name of affordability:
 - There are unnecessary conflicts with most other tariff objectives
 - Resulting subsidies are limited and regressive
- It is possible to design tariffs that promote household-level affordability (targeted or untargeted) but are still consistent with economic efficiency, resource conservation, equity, fairness, and fiscal sustainability
 - One method: uniform tariff with rebate (UTR)