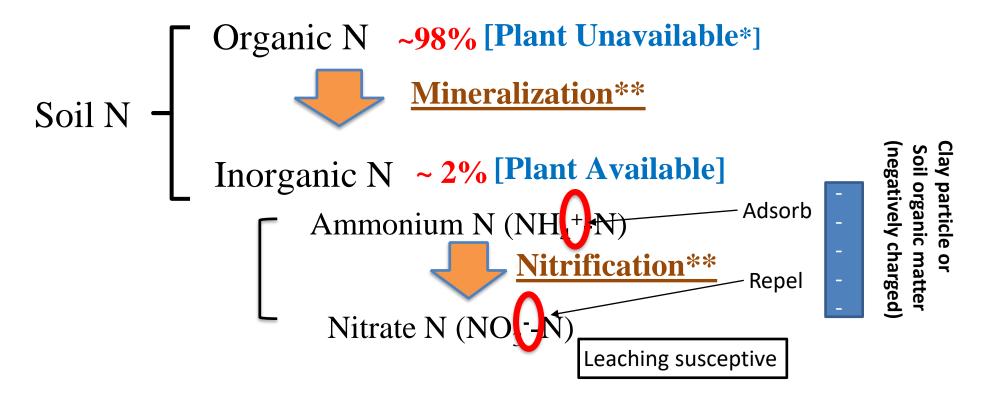


Nitrogen Mineralization from Organic Fertilizers and Composts

Joji Muramoto

Organic Production Specialist, UC Santa Cruz

Irrigation and Nutrient Management Meeting February 23, 2022

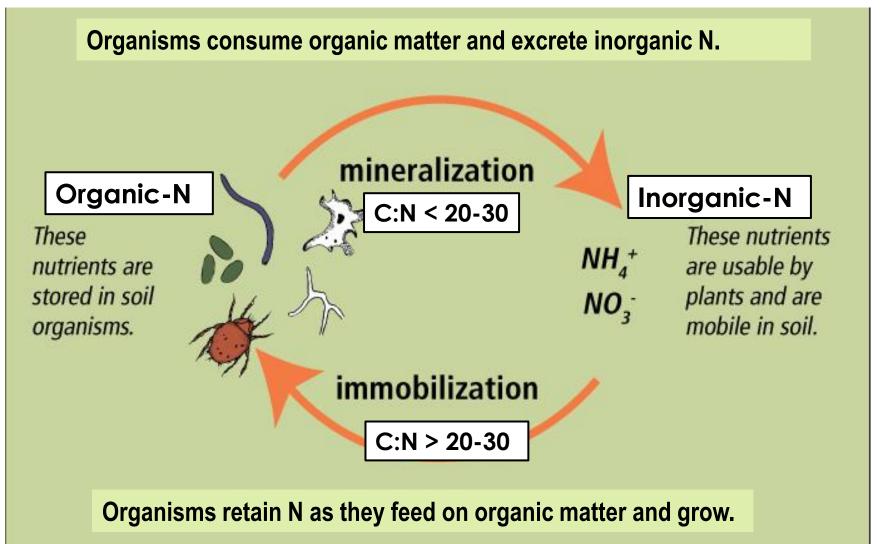

Outline

- 1. Why nitrogen (N)?
 - N in plant and N in soil
 - plant available N in soil
- 2. N mineralization vs. N immobilization
- 3. N mineralization of organic fertilizers and composts
 - Incubation study
 - Simulation model

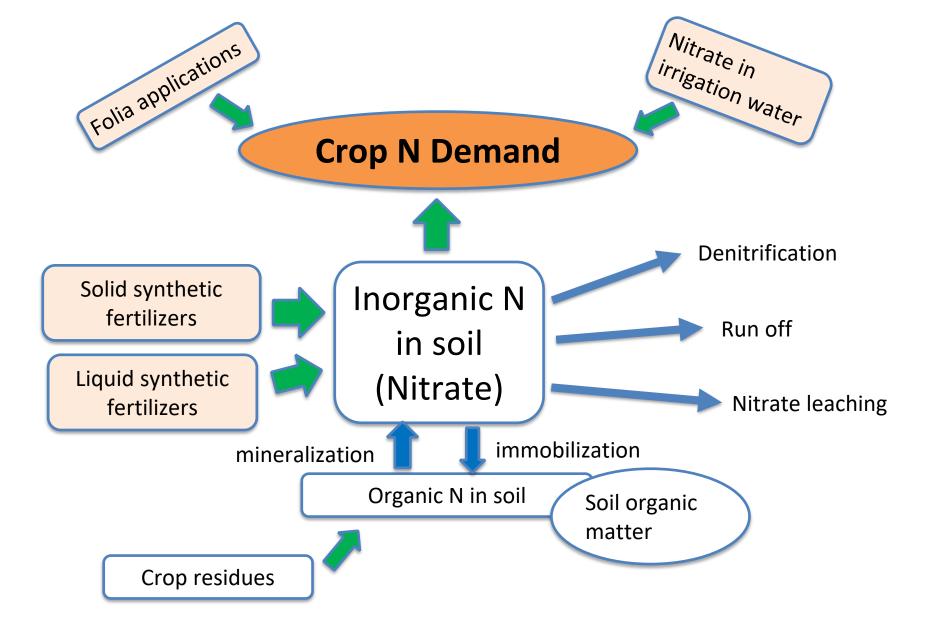
Nitrogen (N) in plants; A key to crop production

- Primary nutrient affecting plant growth
 - photosynthesis
 - biomass structure
 - metabolism
 - energy production
 - reproduction
- N deficiency
 - Yellowish green leaves, smaller plants, lower yield
- N excess
 - Dark green leaves, large vegetative plants, susceptive to diseases

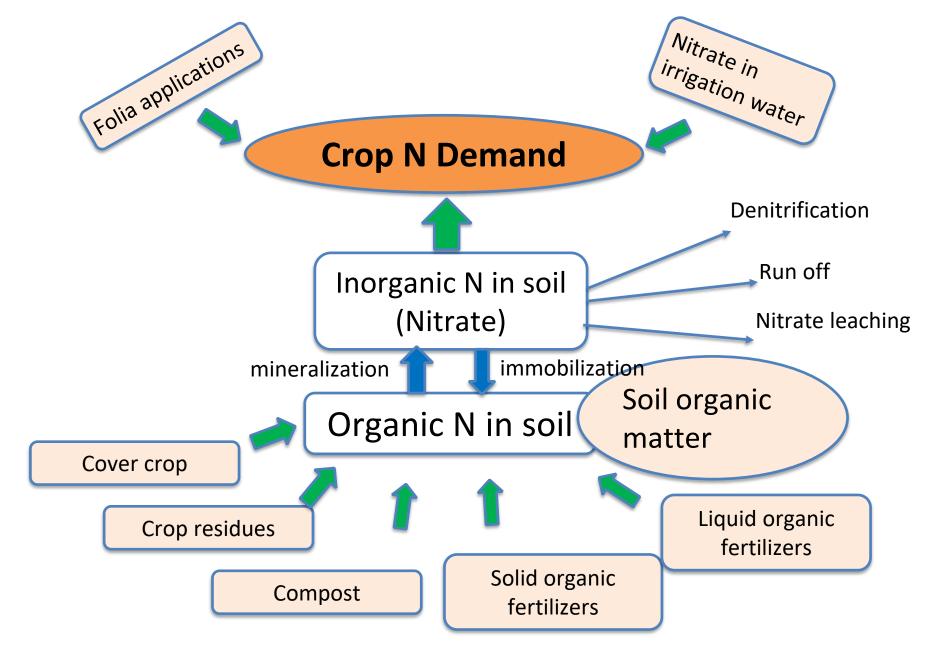
N Forms in Soil and Plant Availability


^{*} Plants can absorb small amounts of organic N and some crop plants can do more than others

^{**} Biological processes affected by environmental factors such as soil temperature. moisture, etc.


Nitrogen mineralization & immobilization

- Soil microorganisms decompose residue
- Need N and C as building blocks for their own biomass
- C is also used as energy source
- N mineralization: Release excess N in the form of NH₄⁺ into soil solution
- **N immobilization:** Uptake of NO₃ or NH₄ from soil solution and incorporation into microbial tissue


N mineralization vs. N immobilization

(Adopted from USDA-NRCS, 2017)

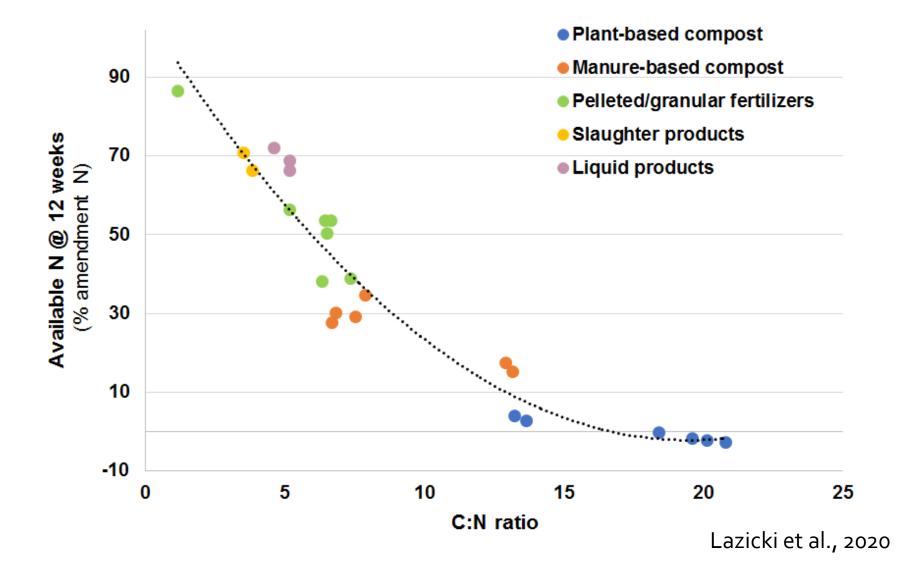
N dynamics in conventional systems

N dynamics in organic systems

Factors affecting decomposition and N mineralization

- Soil temperature
- Soil moisture
- Quality of organic source
 - Nitrogen content
 - C to N ratio
 - Availability of C and N
- Management

Amendment incubation



Overview of amendments tested

Material	Typical N content (%)	Typical C:N ratio	N available after 12 weeks
Municipal yard trimmings composts	0.5 - 2.0	13 - 20	-3 - 4%
Poultry manure composts	2.0 - 5.0	6 - 8	30 - 35%
Granular fertilizers	2.0 - 7.0	5 - 7	38 - 60%
Blood & feather meals	13 - 15	3 - 4	65 - 70 %
Liquid fertilizers	2.0 - 4.0	4 - 6	50 - 100%
Guano	12 - 13	3 - 4	80 - 90%

Lazicki et al., 2020

Effect of C to N ratio on N release

AgOrder 4.0

Table MRP-3. Organic Fertilizer Discount Factor

- 17 17 2000 Fe 15 10 10 10 10 10 10 10 10 10 10 10 10 10	1 10 0 0 0 0
C to N Ratio of	Discount Factor Based on
Organic Product	Predicted Mineralization
	Rate (O)
< 1.5	1.00
1.5	0.904
2.0	0.852
2.5	0.802
3.0	0.754
3.5	0.707
4.0	0.661
4.5	0.617
5.0	0.574
5.5	0.533
6.0	0.493
6.5	0.455
7.0	0.418
7.5	0.383
8.0	0.349
8.5	0.317
9.0	0.285
9.5	0.256
10.0	0.228
10.5	0.202
11.0	0.177
11.5	0.153
12.0	0.131
12.5	0.111
13.0	0.091
13.5	0.074
14.0	0.058
14.5	0.043
15.0	0.030

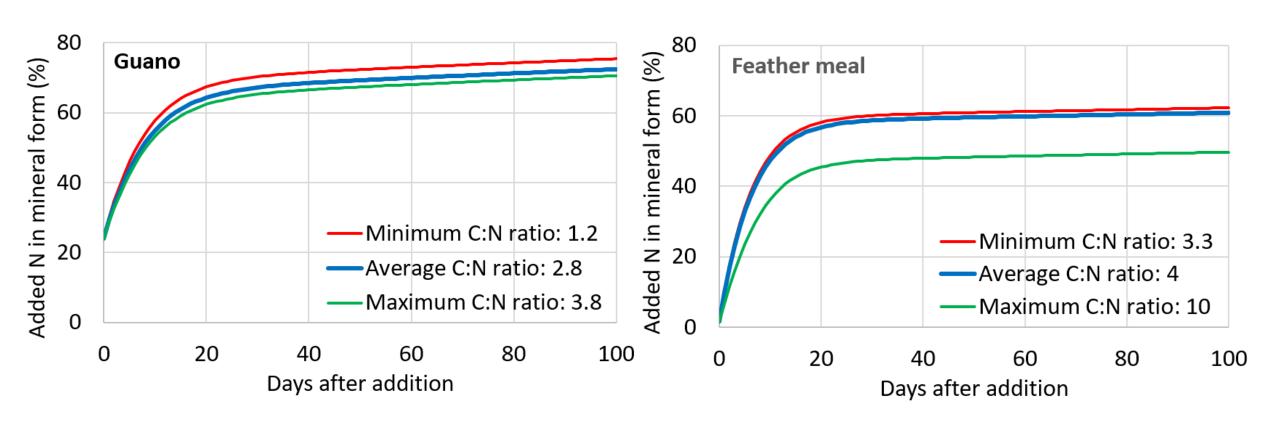
Open questions

- Can we describe N mineralization over time with equations that can be used in decision support tools (e.g. CropManage)?
- How variable are different groups of amendments?

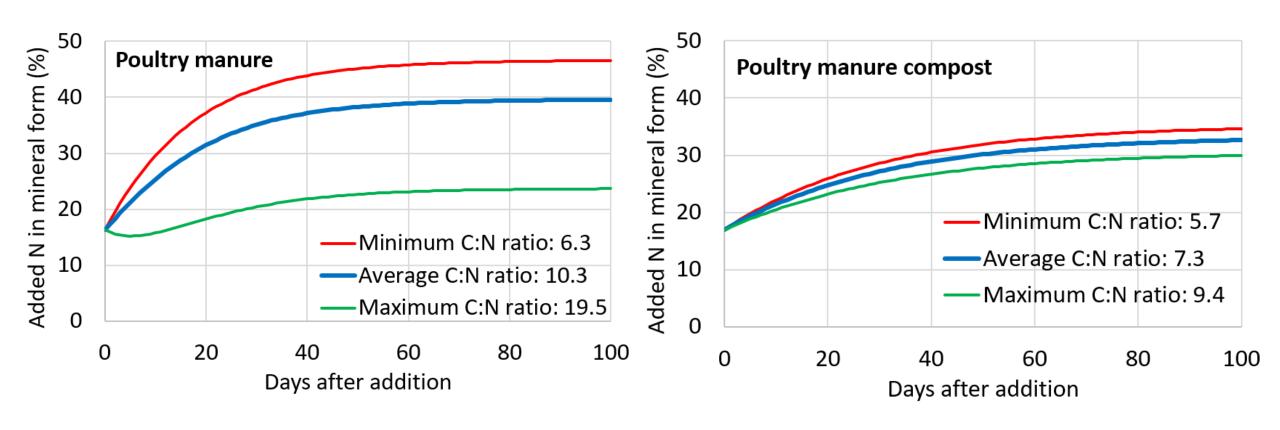
Need a bigger dataset

Our approach

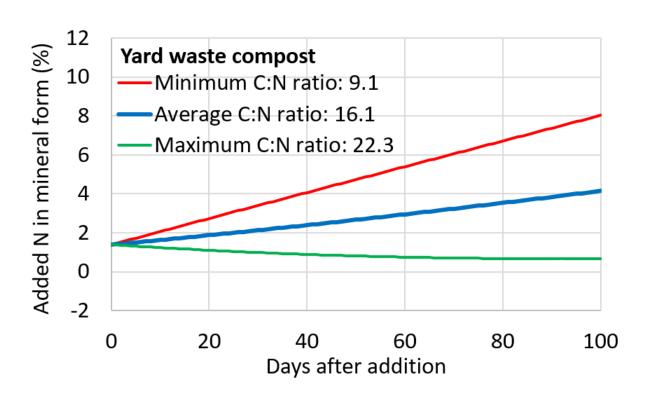
- Compiled data from the literature
- Used model to simulate net N mineralization at 77 °F and optimal moisture

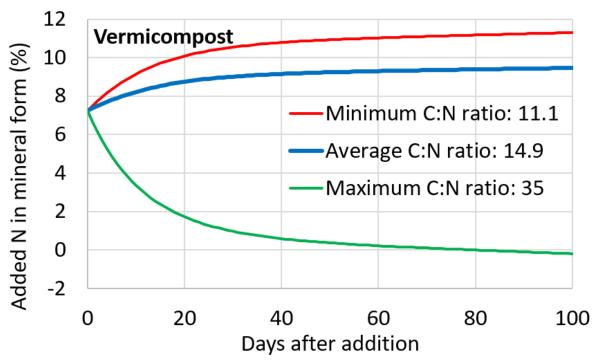

Why use a model?

- Studies differed with respect to
 - Temperature
 - Duration


The dataset

Material	Studies Datasets Observations			C to N ratio in dataset			
				Average	Min	Max	
Guano	4	8	44	2.8	1.2	3.8	
Feather meal	7	14	70	4.0	3.3	10.0	
Poultry manure	9	29	195	10.3	6.3	19.5	
Poultry manure compost	4	16	77	7.3	5.7	9.4	
Vermicompost	8	21	125	11.1	14.9	35.0	
Yard waste compost	6	25	126	16.1	9.1	22.3	


Guano and feather meal



Poultry manure and poultry manure compost

Yard waste compost and vermicompost

Net N mineralization rates

After 100 days, at 77 °F, optimal moisture

Material	Net N mineralization (% of N added)			
	Average	Min	Max	
Guano	72.5	70.6	75.5	
Feather meal	60.9	49.7	62.2	
Poultry manure	39.6	23.7	46.6	
Poultry manure compost	32.7	30.0	34.6	
Vermicompost	9.5	-0.2	11.3	
Yard waste compost	4.2	0.7	8.0	

http://geisseler.ucdavis.edu/Amendment_Calculator.html

Geisseler Lab

Nutrient Management

Nitrogen Mineralization from Organic Amendments

The calculations in this tool are based on an analysis of 113 datasets from the scientific literature. Nitrogen mineralization rates are adjusted based on soil temperature data from local CIMIS weather stations. Soil moisture is assumed to be optimal near field capacity. When amendments are incorporated into dry soil, N mineralization would be slower than calculated. The tool should not be used when amendments are left on the soil surface.

Information on lines marked with an * needs to be provided. If no information on amendment and soil properties are entered, the tool will use average values. In this case, however, the calculations will be less accurate for a specific situation.

To be integrated with CropManage!

Factors affecting decomposition and N mineralization

- √ Soil temperature
- × Soil moisture ⇒ Assumes moist soil
- ✓ Quality of organic source

Nitrogen content

C to N ratio

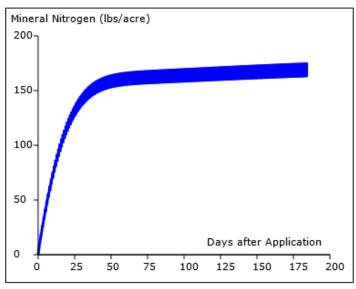
Availability of C and N

★ Management ⇒ Assumes incorporation

The online tool Input

Amendment Application

Region*:	Sacramento Valley - Yolo 🔻					
Type of amendment*:	Feather meal 🔻					
Application rate*:	tons/ac					
Application date*:	mm / dd / уууу					
Period of interest:	3 Months 🔻					
Depth of incorporation*:	inches 🗸					
* Required input.						
Amendment Properties						
Amendment dry matter:	%					
Total nitrogen:	(% in dry matter ✓					
Carbon to nitrogen ratio:						
Mineral nitrogen: (ammonium and nitrate)	% in dry matter					
	Soil Properties					
Soil organic matter:	%					
Residual soil nitrate:	ppm Nitrate-N 🗸					
Display Results/Changes						


The online tool Input

Amendment Application

Region*:	Sacramen	to Valley - Yolo	v		
Type of amendment*:	Feather m	eal v			
Application rate*:	1	tons/ac			
Application date*:	04/01/	2021 🔕			
Period of interest:	6 Months	v			
Depth of incorporation*:	8	inches 🗸			
* Required input.					
Ame	ndment	Properties			
Amendment dry matter:	95	%			
Total nitrogen:	14.5	% in dry matter		v]	
Carbon to nitrogen ratio:	4				
Mineral nitrogen: (ammonium and nitrate)	0.06	% in dry matter			~
:	Soil Prop	erties			
Soil organic matter:	3	%			
Residual soil nitrate:	10	ppm Nitrate-N 🗸			
Disp	lay Result	s/Changes			

Output: Feather meal, Sacramento Valley

Nitrogen Mineralization

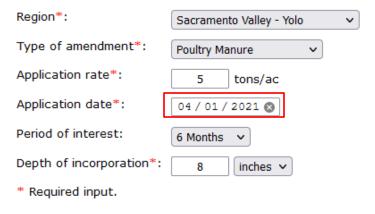
The graph and the calculations are based on average values from scientific studies. Weather conditions, soil properties, amendment characteristics and management all can affect N mineralization rates. It is therefore **important to monitor N availability of the field with soil or leaf analyses**. More information about soil and leaf sampling can be found here.

Total N applied:

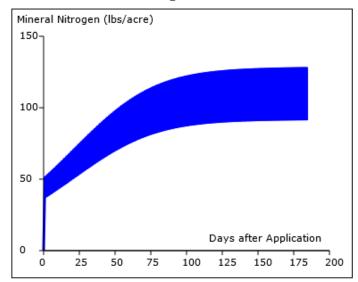
Total mineral N applied:

Estimated available N:

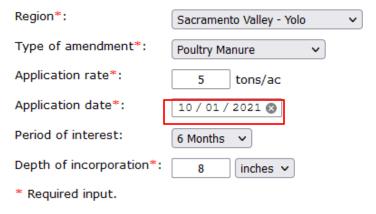
Dercent available:

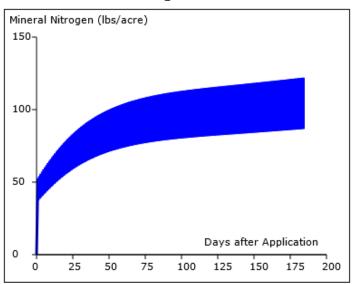

1.3 lb/ac

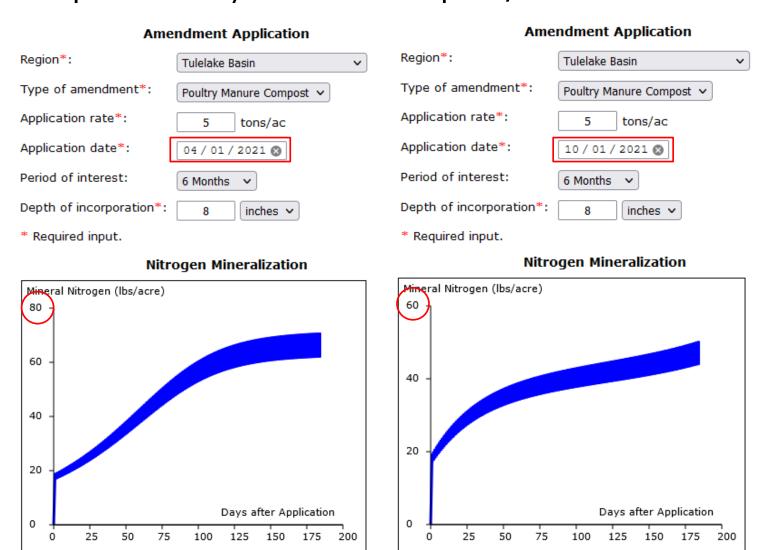
1.3 lb/ac


162 - 176 lb/ac

Output: Poultry manure, Sacramento Valley


Amendment Application


Nitrogen Mineralization


Amendment Application

Nitrogen Mineralization

Output: Poultry manure compost, Tulelake Basin

Acknowledgements

- CDFA Specialty Crops Block Grant Program
- CDFA Fertilizer Research and Education Program (FREP)
- Daniel Geisseler, Richard Smith, Mike Cahn
- Patricia Lazicki

joji@ucsc.edu

