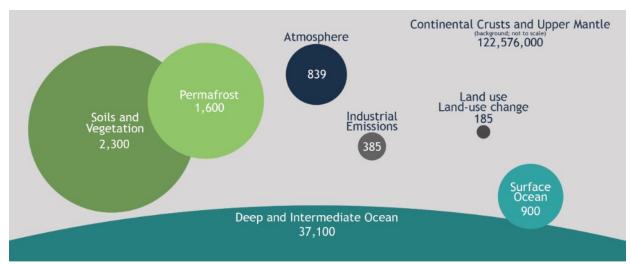
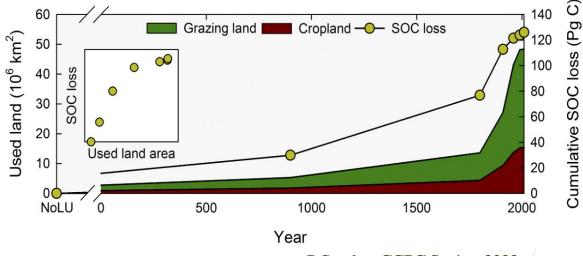


Goals of this talk

50 years of science in 20 mins, grab some coffee!

- 1. Why does soil carbon matter?
- 2. Why is restoring soil carbon important?
- 3. What is soil carbon sequestration, and how does it work?
- 4. Challenges of soil carbon sequestration on rangelands
- 5. What options are there for sequestering soil carbon on rangelands?
 - 1. Existing practices
 - 2. State of the science
 - 3. Unknowns, gaps, and future research
 - 4. Adaptive rotational grazing


Why does carbon in soils matter?


Soils contain a lot of carbon

- Next to the ocean, soils are the largest reservoir of carbon on Earth
- Soils contain 3x more carbon than the atmosphere, and >2x the carbon in all vegetation and the atmosphere combined!

....But they've lost a lot of carbon

- Soils have lost up to 50% of their carbon due to human activity
- Much of the loss has been on grazing lands ¹

Why is restoring soil carbon important?

Climate change mitigation

Pulling carbon from the atmosphere into soils can help reduce greenhouse gas emissions ²⁻³

Plant productivity

Soil carbon is important for plant growth and productivity: more soil carbon often = higher productivity ⁴

Water infiltration

Increasing soil carbon improves soil's ability to hold, absorb, and infiltrate water ⁵

Reduced input needs

Improved ecosystem services through soil carbon can reduce the need for inputs like irrigation and fertilizers

Climate change adaptation

Healthier soils can better adapt to climate change ⁶, and soil C is more stable than other types of C ⁷

pieces of decaying soil microbes plants and animals small organic microscopic organic molecles minerals fragments particulate mineral-associated organic matter organic matter lifetime slow lifetime fast carbon carbon 1-50 cycling 10-1000 years years nitrogen nitrogen cycling

What is soil C sequestration – how does it work?

Plants!

Plants, and largely roots, die + decompose and eventually become soil C

Microbes + organisms

Microbes transform plant and soil inputs to form soil C, and eventually die and decompose too

Other inputs

Additions like fertilizer, compost, and animal manure also contain C and can add/change soil C

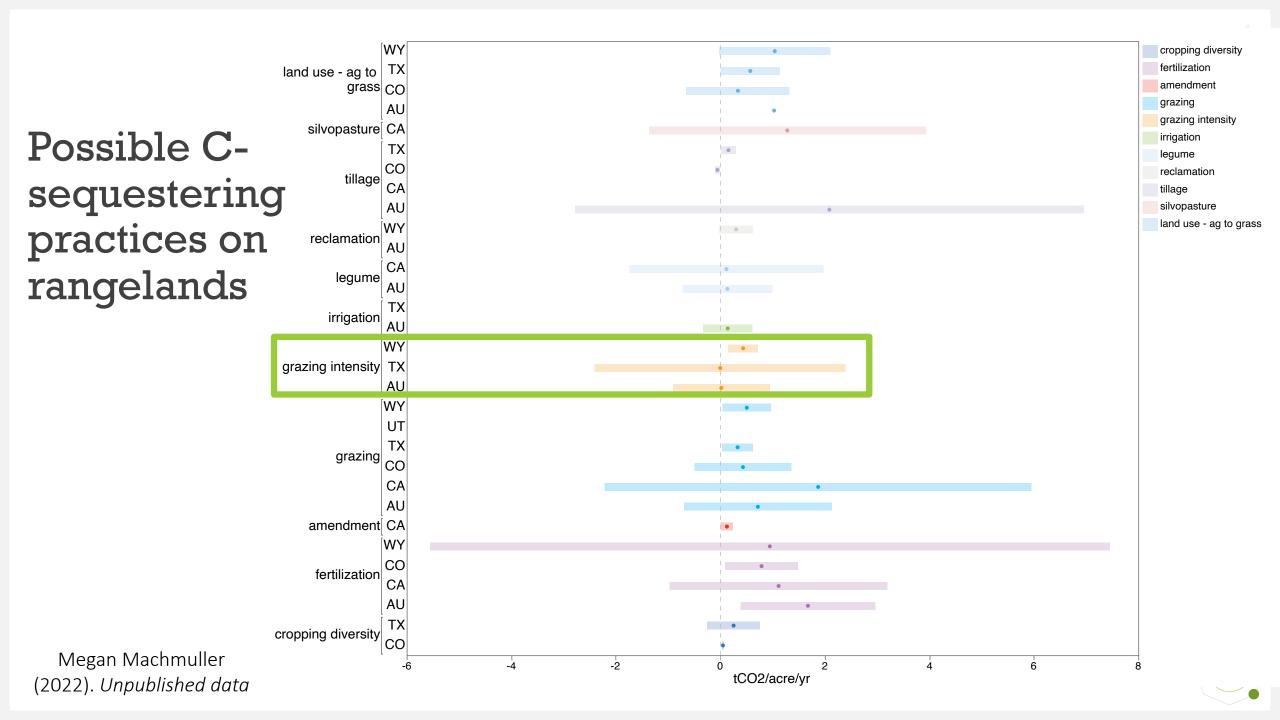
Cotrufo, M. F., & Lavallee, J. M. (2021). Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration.

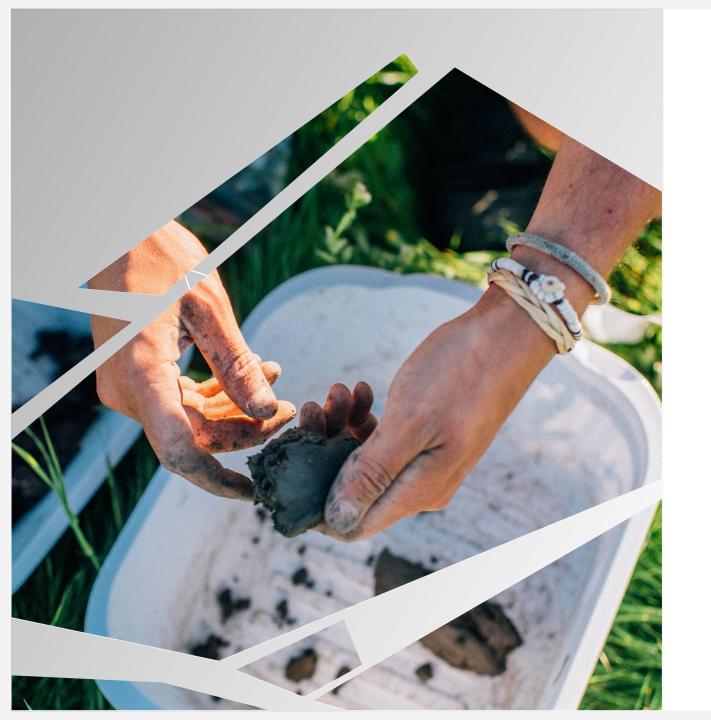
Where do rangelands fit into this equation?

What are the challenges of soil carbon sequestration on rangelands?

Rangelands cover ~50% of Earth's terrestrial surface

- Rangelands cover approximately 50% of Earth's terrestrial surface
- Large land area = large potential for soil carbon sequestration! ¹⁰⁻¹¹


There are biogeophysical limitations


- Compared to other lands like croplands, there are constraints to soil C sequestration on rangelands¹², including:
 - Marginality
 - Variable precipitation
 - Rocky soils
 - Remoteness and difficulty of managing

Research challenges constrain understanding

- In addition, research of soil carbon sequestration on rangelands is very limited
- Small and short-term experiments are not representative ¹³
- Heterogeneity of rangelands require lots of soil samples ¹⁴

Possible C-sequestering practices on rangelands

Compost application

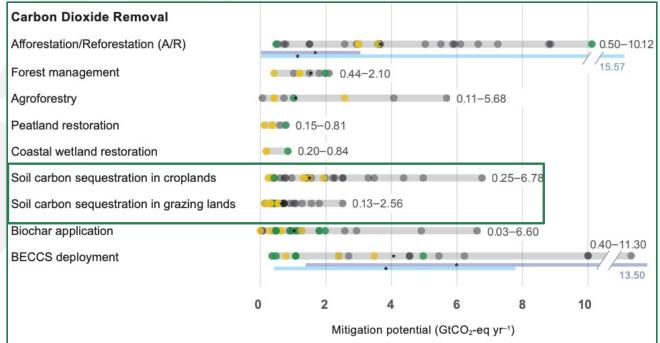
Marin Carbon Project results showed an 18% average soil C increase after 3 years of compost on valley rangelands ¹⁵

Perennialization

Perennials have deeper roots and longer life-spans, which increase soil carbon ¹⁶

Grazing management?

Can changes to grazing management help sequester carbon, since cattle are already ranchers' primary tool?


Soil carbon sequestration potential of grazing management

4-5 GtCO₂ yr⁻¹

 Total sequestration potential on crop and grazing lands ¹⁷


$1.4-1.8 \ \text{GtCO}_2 \ \text{yr}^{-1}$

 Mitigation potential via soil C sequestration via grazing management ¹⁸⁻¹⁹

Soil carbon sequestration potential of grazing management

P. Stanley, CCRC Spring 2022 10

How can grazing management impact soil carbon?

Many of the same strategies are recommended as drought adaptation strategies 20

Practices like:

- Animal movement/rotation²¹
- Pasture rest ²¹
- Changes in stocking density and "intensity" ²¹

Can influence soil C dynamics:

- Reducing C outputs
- Increasing C inputs
- Changing internal C transformation

By:

- Preventing overuse or overgrazing
- Changing forage utilization
- Changing amount or distribution of manure
- Building adaptability/flexibility to meet these goals

State of the science: grazing and soil carbon on rangelands

What do we know about when, where, and how grazing affects soil carbon on rangelands?

GLOBAL

all grazing lands

- Globally, there are many studies on grazing and soil carbon
- Most studies are on nonarid grasslands
- They have shown changes in grazing management can increase soil carbon
- Carbon sequestration rates range from 0.1-3.5
 Mg C/ha/yr depending on the place and practice ²²

SEMI-ARID

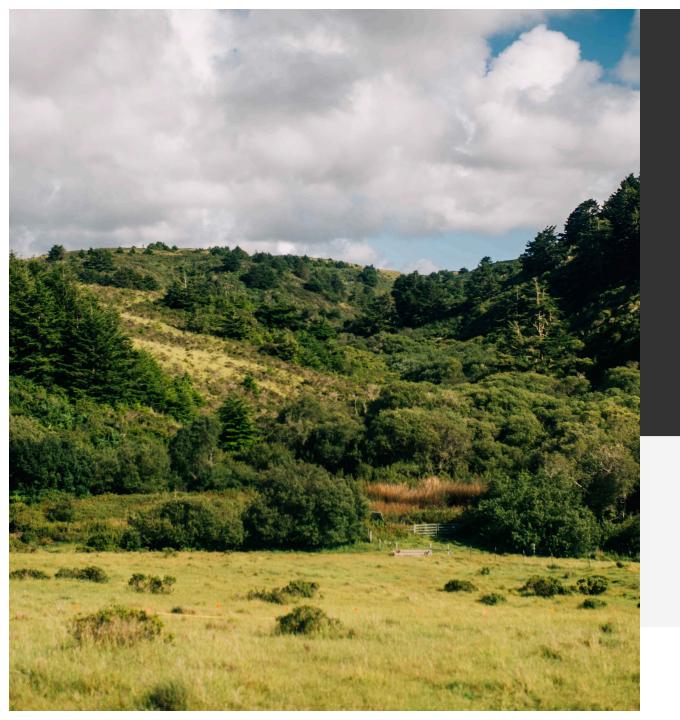
rangelands

- Studies on semi-arid rangelands are limited
- Generally, grazing soil
 C compared to no
 grazing, and heavy
 grazing soil C ²³
- Evidence of "rotational" grazing on soil C on semiarid rangelands is mixed
- Recent meta-analysis shows that "rotational grazing" can improve soil C on semi-arid rangelands by ~0.3x ²⁵

CALIFORNIA

rangelands

- In California, studies of grazing management + soil carbon are even more limited
- Current studies show only the presence or absence of grazing on soil carbon, but do not study grazing management systems
- The effect of different grazing management regimes on soil carbon is unknown in California! ²⁶⁻


State of the science: grazing and soil carbon on rangelands

OTHER SCIENTIFIC GAPS

- 1. What does it take to measure soil carbon *accurately* on rangelands?
 - Not enough samples = unreliable estimates! ²⁹
- 2. Differentiating between grazing management types, moving beyond "rotational" grazing

NEED FOR FUTURE RESEARCH

- 1. Clear need for more research on grazing management and soil carbon, especially in semi-arid rangelands!
- 2. California specific studies
- 3. Studies on adaptive rotational grazing as one form of grazing management! ²⁶

What about adaptive rotational grazing?

... Stick around for the next talk!!

References

- ¹ Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. *Proceedings of the National Academy of Sciences*, 114(36), 9575-9580.
- ² Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., ... & Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. *Nature Sustainability*, *3*(5), 391-398.
- ³ Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., ... & Fargione, J. (2017). Natural climate solutions. *Proceedings of the National Academy of Sciences*, *114*(44), 11645-11650.
- ⁴ Schuman, G. E., Janzen, H. H., & Herrick, J. E. (2002). Soil carbon dynamics and potential carbon sequestration by rangelands. *Environmental pollution*, *116*(3), 391-396.
- ⁵ Minasny, B., & McBratney, A. B. (2018). Limited effect of organic matter on soil available water capacity. *European journal of soil science*, *69*(1), 39-47.
- 6 Smith, P., & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. *The Journal of Agricultural Science*, 148(5), 543-552.
- 7 Dass, P., Houlton, B. Z., Wang, Y., & Warlind, D. (2018). Grasslands may be more reliable carbon sinks than forests in California. *Environmental Research Letters*, *13*(7), 074027.
- ⁸ Olson, D. M., Dinerstein, E., Wikramanayake, E. D., et. al. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. *BioScience*, *51*(11), 933-938.

- ⁹ Rangeland atlas: https://www.rangelandsdata.org/atlas/maps/distribution-rangeland-types-globally
- ¹⁰ Fynn, A. J., Alvarez, P., Brown, J. R., George, M. R., Kustin, C., Laca, E. A., ... & Wong, C. P. (2010). Soil carbon sequestration in United States rangelands. *Grassland carbon sequestration: management, policy and economics*, *11*, 57.
- ¹¹ Schuman, G. E., Janzen, H. H., & Herrick, J. E. (2002). Soil carbon dynamics and potential carbon sequestration by rangelands. *Environmental pollution*, *116*(3), 391-396.
- ¹² Booker, K., Huntsinger, L., Bartolome, J. W., Sayre, N. F., & Stewart, W. (2013). What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States?. *Global Environmental Change*, *23*(1), 240-251.
- ¹³ Teague, R., Provenza, F., Kreuter, U., Steffens, T., & Barnes, M. (2013). Multipaddock grazing on rangelands: why the perceptual dichotomy between research results and rancher experience?. *Journal of Environmental management*, *128*, 699-717.
- ¹⁴ Allen, D. E., Pringle, M. J., Page, K. L., & Dalal, R. C. (2010). A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands. *The Rangeland Journal*, *32*(2), 227-246.
- ¹⁵ Ryals, R., Kaiser, M., Torn, M. S., Berhe, A. A., & Silver, W. L. (2014). Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. *Soil Biology and Biochemistry*, *68*, 52-61.

References

- ¹⁶ Owen, J. J., Parton, W. J., & Silver, W. L. (2015). Long-term impacts of manure amendments on carbon and greenhouse gas dynamics of rangelands. *Global change biology*, *21*(12), 4533-4547.
- ¹⁷ Paustian, K., Larson, E., Kent, J., Marx, E., & Swan, A. (2019). Soil C sequestration as a biological negative emission strategy. *Frontiers in Climate*, 8.
- ¹⁸ Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., ... & Stehfest, E. (2016). Greenhouse gas mitigation potentials in the livestock sector. *Nature Climate Change*, *6*(5), 452-461.
- ¹⁹ Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., ... & Malley, J. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
- ²⁰ Roche, L. M. (2016). Adaptive rangeland decision-making and coping with drought. *Sustainability*, *8*(12), 1334.
- ²¹ Piñeiro, G., Paruelo, J. M., Oesterheld, M., & Jobbágy, E. G. (2010). Pathways of grazing effects on soil organic carbon and nitrogen. *Rangeland Ecology & Management*, *63*(1), 109-119.
- ²² McSherry, M. E., & Ritchie, M. E. (2013). Effects of grazing on grassland soil carbon: a global review. *Global change biology*, *19*(5), 1347-1357.
- ²³ Schuman, G. E., Reeder, J. D., Manley, J. T., Hart, R. H., & Manley, W. A. (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. *Ecological applications*, *9*(1), 65-71.

- ²⁴ Briske, D. D., Derner, J. D., Brown, J. R., Fuhlendorf, S. D., Teague, W. R., Havstad, K. M., ... & Willms, W. D. (2008). Rotational grazing on rangelands: reconciliation of perception and experimental evidence. *Rangeland Ecology & Management*, *61*(1), 3-17.
- ²⁵ Byrnes, R. C., Eastburn, D. J., Tate, K. W., & Roche, L. M. (2018). A global meta-analysis of grazing impacts on soil health indicators. *Journal of environmental quality*, *47*(4), 758-765.
- ²⁶ Vaughn, L. S., Panlasigui, S., & Spotswood, E. (2020). *Livestock grazing and its effects on ecosystem structure, processes, and conservation*. Midpeninsula Regional Open Space District.
- ²⁷ Carey, C. J., Gravuer, K., Gennet, S., Osleger, D., & Wood, S. A. (2020). Supporting evidence varies for rangeland management practices that seek to improve soil properties and forage production in California. *California agriculture*, 74(2), 101–111.
- ²⁸ Silver, W. L., Ryals, R., & Eviner, V. (2010). Soil carbon pools in california's annual grassland ecosystems. *Rangeland Ecology & Management*, *63*(1), 128–136.
- ²⁹ Stanley et al., (2022). Valid inferences about soil carbon in heterogeneous landscapes. *Global Change Biology (in review)*.