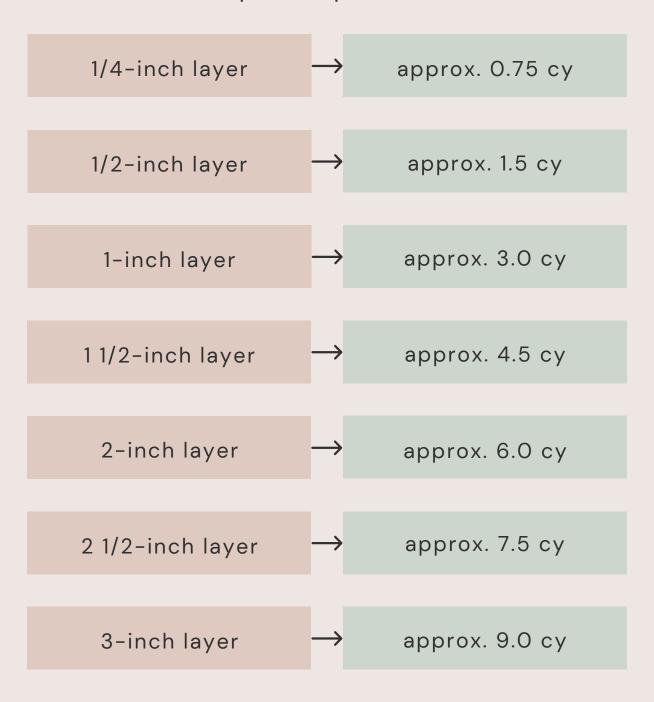
KEY COMPOSTING PARAMETERS

Component	Reasonable Range	Preferred Range
Moisture (%)	40 - 70	55 - 65
C:N	12:1 - 60:1	25:1 - 40:1
Oxygen (%)	Greater than 5	Greater than 10
Temperature (°F)	113 – 160	120 – 150
рН	5.5 – 9.0	6.5 – 8.0
Particle size (in.)	1/8 – 2	Depends on feedstock
Porosity: Bulk Density (lbs/cy) Free Air Space (%)	Less than 1,200 40 - 60	700 – 1,000 50 – 60

COMMON FEEDSTOCK C:N

CARBON SOURCES

Source	XX:1
Wood Chips	200-700
Newspaper	560
Cardboard	200-500
Mixed Paper	150-200
Wheat Straw	140-150
Sawdust	100-230
Bark	100-130
Oat, Rye Straw	70-90
Almond Hulls	60-100
Corn Cobs	55-120
Leaves	30-80


COMMON FEEDSTOCK C:N

NITROGEN SOURCES

Source	XX:1
Blood or Bone Meal	3-4
Pig Manure	5-7
Poultry Manure	5–10
Alfalfa	13
Horse manure	15-25
Timothy Hay	15-25
Grass Clippings	15-25
Food Scraps	15-25
Grape Pomace	17-30
Coffee Grounds	20
Clover	23

Compost Use Calculator

Cubic Yards Compost Required to Cover One Acre

Formula: area to cover (ft2) x inches of compost x 0.0031 = ___ cy

What is Compost?

A product and a process!

- Controlled, aerobic biological decomposition
- Undergoes mesophilic and thermophilic temperatures
- Finished product is stabilized to benefit plant growth

Why Make Compost?

Manage a waste product

Make a profit or reduce costs

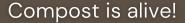
Produce a soil amendment

Reduce manure methane

5 Kill pathogens

6 Kill weed seeds

Compost Thoughts


- Why are you composting?
- Where are you composting?
- *How* are you composting?
- Who is composting?
- What are you composting?
- What will you do with the product?

Adapted from Compost Research & Education Foundation

Compost Bacteria

In = feedstocks, microorganisms, oxygen, water

Out = water, CO2, heat, odors, gases, **compost**

Why does the pile compost?

- Microbes consume feedstocks to obtain energy and nutrients
- Activity generates heat
- Heat trapped in pile accelerates activity

Microbes need:

- Food
 - Energy
 - Nutrients
- Water
- Oxygen
- Hospitable environment
 - Temperature
 - o pH

Microbes secrete enzymes which break down feedstocks

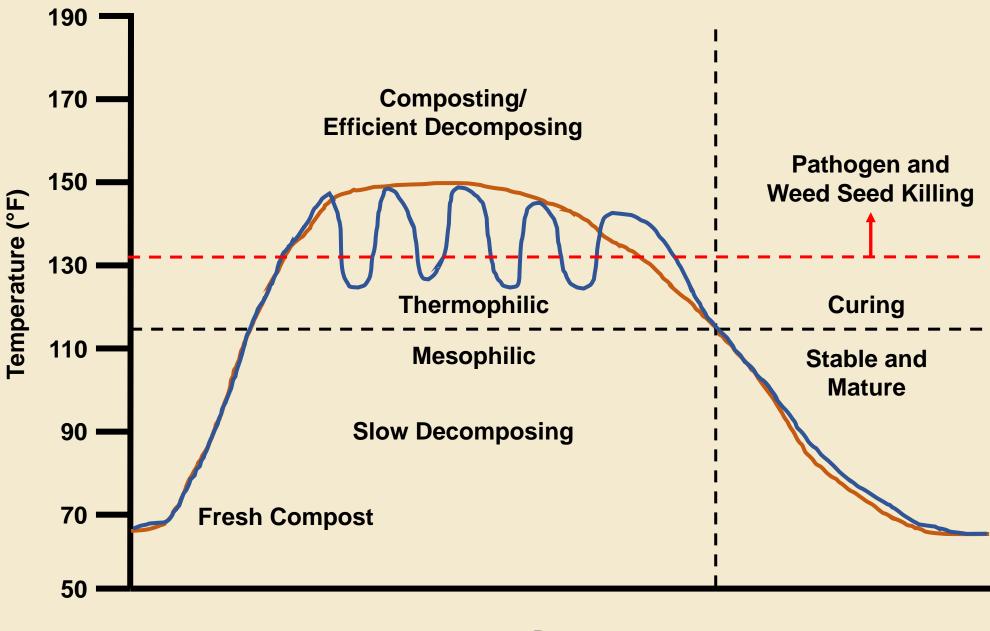
Pathogens die or consumed around 131 °F

Sustained temperatures above 160 °F kills good bacteria

Types of Microbes:

Bacteria

• 80-90% of population


Fungi

- Molds, yeasts, mushrooms
- Mostly present during mesophilic stages
- Live on outer layers when temps high
- Breakdown tough organic material (cellulose, hemicellulose, lignin)

Actinomycetes

- Grey in color
- Resemble fungi, but bacteria with filaments
- Give earthy smell

Adapted from Compost Research & Education Foundation

Days

Key Composting Components

1. Feedstocks

- 2. Moisture
- 3. Aeration
- 4. Shape and size
- 5. Temperature
- 6.Time

Feedstock Considerations

Ol Chemical Composition

Organic Matter, Nutrients, pH, Degradability

Physical Characteristics

Moisture, Bulk Density, Heterogeneity

O3 Other

Contamination, Cost, Availability, Regulations

Adapted from Compost Research & Education Foundation

Carbon "browns"

- Source of energy for decomposers
- Sources:
 - Woodchips
 - Straw
 - Almond Hulls
 - Sawdust

Nitrogen "greens"

- Source of protein for decomposers
- Sources:
 - Fresh plant material (green leaves, grass, vegetables)
 - Animal wastes (manure, feathers, hair)

C:N ratio

- How much more carbon than nitrogen
- Does not count for availability (particle size, surface area, degradability)
- Ideal starting range: 25:1 to 35:1

Porosity and Free Air Space

Porosity = non-solid portion of pile

Free Air Space (FAS) = pore space not containing liquid

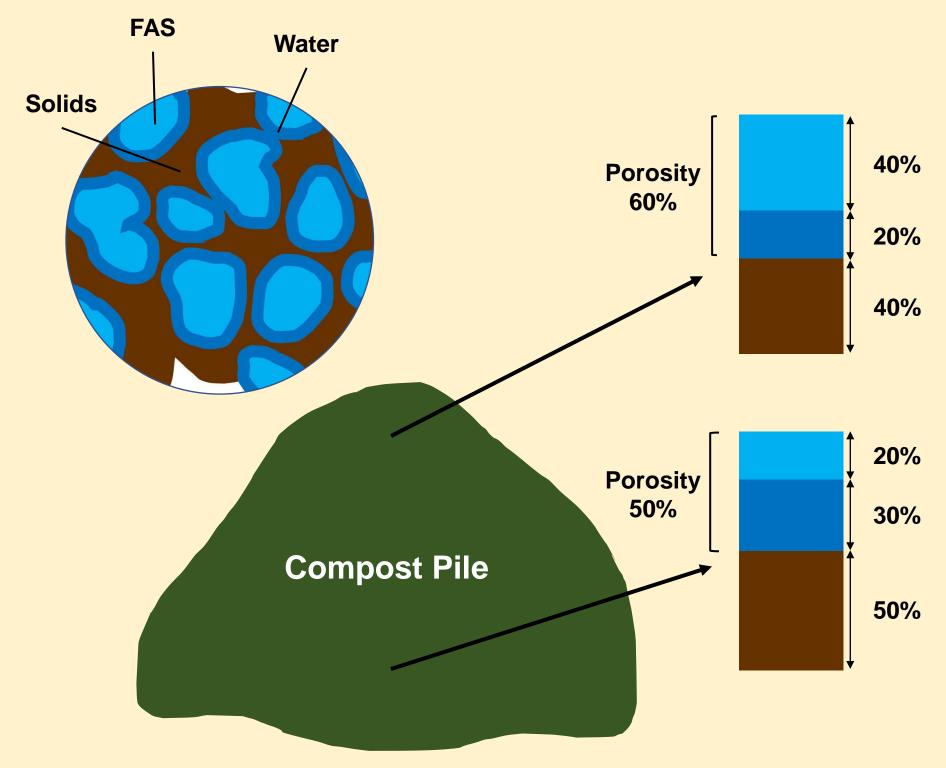
Start at > 50% FAS

Bulk Density

Measure of mass per unit volume (lbs/ft3, tons/cy)

- < 700 lbs/cy = too much air
- > 1,000 lbs/cy = difficult to aerate
- > 1,200 lbs/cy = too little air

700 to 1,000 = good FAS


Feedstocks

Recipe = feedstock combination

Combine based on characteristics to meet composting needs (moisture, nutrients, temperature, etc.)

Adapted from Compost Research & Education Foundation

