Troubleshooting Techniques for Efficient Drip Irrigation Systems

Khaled M. Bali
Statewide Irrigation Water Management Specialist- Kearney REC and
Andre Biscaro
Irrigation and Water Resources Advisor- UCCE Ventura County
kmbali@ucanr.edu

UC Agriculture and Natural Resources
University of California

2025 Irrigation and Nutrient Management Meeting For Vegetable and Berry Crops- Ventura 8/21/2025

Goals

- Simple and quick approach to evaluate drip irrigation system performance

- Connecting distribution uniformity (DU) to flow rate (Q)

- Practical examples based on data from Ventura and other locations in CA

Irrigation Water Management: What you need to know to Design a Drip System

- Crop, farm size, soil type, water source, water quality, water availability, etc
- Max. Crop water use (units, gallons/tree per day, in/day)
- Flow rate (gpm, gph, or cfs)
- Design Pressure (1 psi=2.31 ft, typically 10-20 psi)
- Variation in elevation if any
- Other considerations (example leaching, etc)

Irrigation Water Management

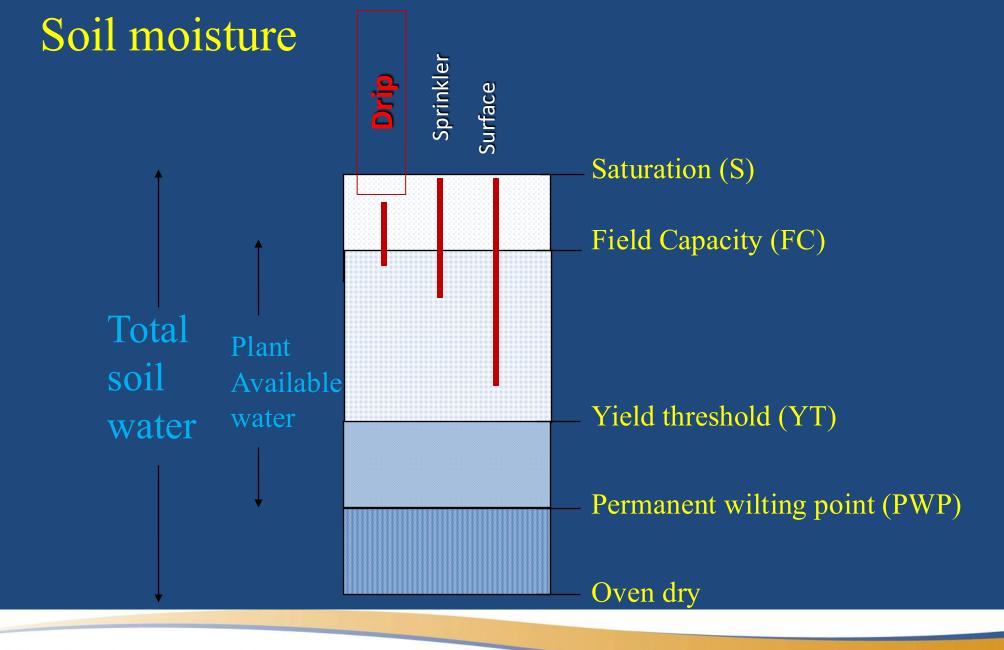
 Applying the right amount of water to meet crop water requirements (in/irrigation)

Timing of irrigation events (frequency, days between irrigations)

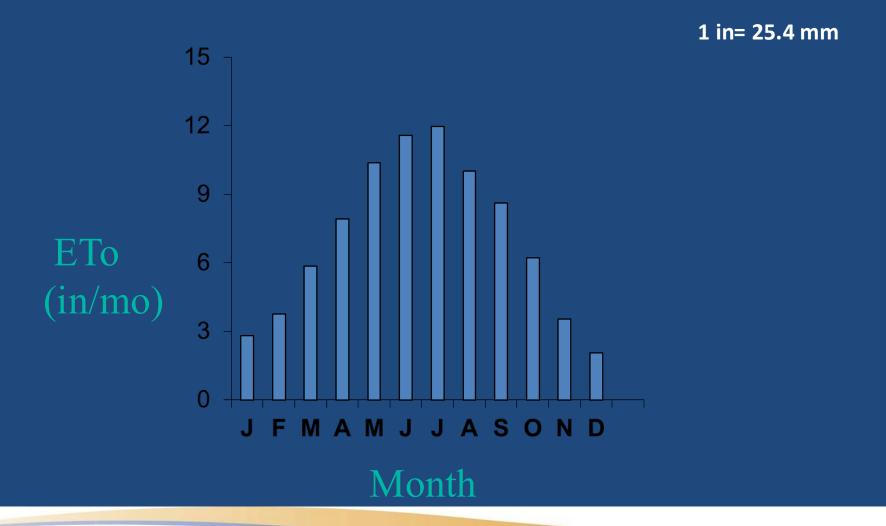
Applying the water uniformly (efficiency)

Irrigation Scheduling

Simple approach (Water budgeting using ETo and crop coefficients)


 Soil moisture measurement (requires extra work, soil sampling, soil moisture sensors, dataloggers, etc)

 A combination of the above two (and technologies to help in making irrigation decisions)


How Much Water do I need to Apply?

- Need to know crop water use (crop evapotranspiration, ETc) since last irrigation
- ETc from (ETo and crop coefficient)

- Application rates (depends on the irrigation system and soil type):
- Surface: ~ 3-5 in/irrigation (a lot more for lighter soils)
- Sprinkler: ~ 0.5-1.5 in/irrigation
- Drip: ~ 0.25-1 in/irrigation

Water use (ET based scheduling)

On-Farm Water Conservation =Higher Application Efficiency (AE)

IRRIGATION = Root zone storage (ETc) + DEEP PERCOLATION + Runoff

A + B + C

Application Efficiency (AE)= A/(A+B+C)

To achieve higher efficiency, reduce B and/or C

BUT

Need to have a balance,

Deep Percolation sometimes is needed for salinity control

(700 ppm ~ 0.96 tons of salt/ac-ft but NOT with every irrigation)

Runoff is needed for Uniformity (100% AE means under irrigation)

On-Farm Water Conservation =Higher Application Efficiency (AE)

IRRIGATION = Root zone storage (ETc) + DEEP PERCOLATION + Runoff

A + B + C
Application Efficiency (AE)= A/(A+B+C)
Deep Percolation Ratio= B/(A+B+C)
Runoff Ratio= C/(A+B+C)

Irrigation Water Requirements (IR)

IR= Crop ET/AE

For drip IR= Crop ET/DU

Distribution Uniformity (DU)

DU= Average depth in low quarter/Average depth infiltrated

Many other efficiency parameters BUT

KEEP IT SIMPLE, AE and DU are all you need
AE could be 100% for a given drip system but the system could be completely inefficient
More focus on DU for drip systems

For drip systems, IR= Crop ET/DU

Example: Almond, Kern County, CA. Sep 2024

Example: Almond, Kern County, CA. Sep 2024

Area=Irrigation set

Water collected in 3 mins (mL)	Area A	Area B	Area C	Area D	Area E	Area F
1	77	72	75	77	74	77
2	76	71	75	77	72	76
3	74	70	65	75	68	75
4	71	65	64	75	68	74
5	65	63	60	75	67	70
6	65	63	57	74	66	65
7	62	63	56	74	61	63
8	50	61	51	67	50	58
Total Average	67.5	66	62.875	74.25	65.75	69.75
Lowest Quarter Avg.	56	62	53.5	70.5	55.5	60.5
DU Global DU	0.83	0.94	0.85	0.95	0.84	0.87
Global DO	Area A	Area B	Area C	Area D	Area E	Area F
PSI	13	13	19	18	16	18
Total amount of water (mL) collected						
per tree in 3 minutes	540	528	503	594	526	558
Drip emitter discharge rate (gph)*	0.4	0.3	0.3	0.4	0.3	0.4
Drip emitter (gph) Per tree	2.9	2.8	2.7	3.1	2.8	2.9

Calculate average application rate

Example:

Application rate 0.1 in/hr

Area irrigated 80 acres

Q=Volume/time

80 acres*0.1 in/12= 96 ac-ft (volume)

1 ac-ft= 325,850 gallons

Volume: 325,850*1.2= 391,020 gallons

Q=V/Time

Q=391,020/(60 min)=6,500 gpm

Flow meter reading 6,000 gpm

Flow meter reading: 7,200 gpm

Emitters ► Laterals ✓ Submain Manifold or Header -Chemical Main Line Field System Continues Injector Tank Pressure Gauge Water Meter-Pump Antisiphon Valve Pressure Backflow Regulator Prevention Device Filtration System System Controls and Monitoring FIGURE 1.7 An example of a basic microirrigation system. Courtesy of Kansas State University.

Source: Microirrigation for Crop Production, 2023, Ayars, Zaccaria, and Bali

Ventura County Celery field August 2025

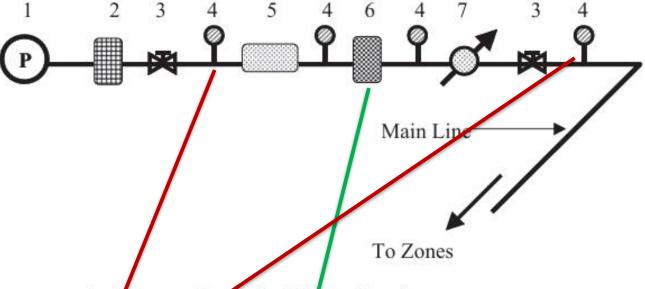
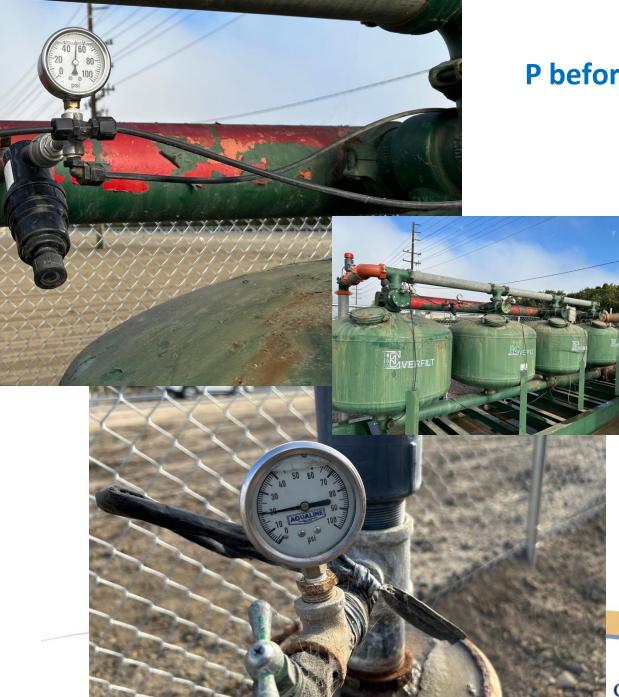
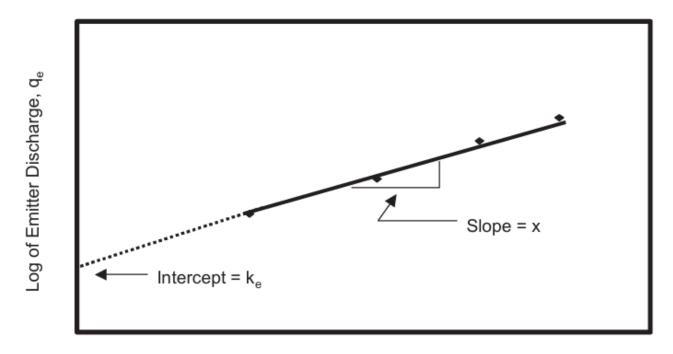



FIGURE 6.3 Example arrangement of the water supply and control head for a microirrigation system.

- 1. Jump or Pressurized Water Supply
- 2. Initial Fifter for Large Particles & Sand (if needed)
- 3 Flow Control Valve
- 4. Pressure Gauge
- 5. Chemical Injection Station Backflow Prevention
- 6. Main Filter Station
- 7. Flowmeter

Source: Microirrigation for Crop Production, 2023, Ayars, Zaccaria, and Bali

Filters


Need to know Design pressure at field =10 psi

Head losses: 8 psi

P at lowest pressure location in field 12 psi

P after filters = 20 psi, great (greater than 10+8)

Cooperative Extension

Log of Pressure Head, h_e

Source: Microirrigation for Crop Production, 2023, Ayars, Zaccaria, and Bali

Emitter flow rate (Q) is a function of Pressure (P)

Example if design P is 10 psi, Q=0.5 gpm If P drops to 8 psi, Q ~ 0.45 gpm

Variation in flow rate due to P losses

(0.5-0.45)/0.5 or 10%

Simple goal for efficient drip system is to have no more than 10% in flow differences between emitters

Emitter flow rate (Q) is a function of Pressure (P)

Example if design P is 10 psi, Q=0.5 gpm If P drops to 8 psi, Q ~ 0.45 gpm

Variation in flow rate due to P loss

(0.45-0.5)/0.5 or 10%
Simple goal for efficient drip system
Is to have no more than 10% in flow
differences between emitters

Catch can method:
Volume over time
Close to main line
Example 100 ml in
10 minutes

Check pressure at the potential lowest pressure location in the field/set Example 10 psi, great

Volume over time
Close to lowest P in field/set
Example 90 ml in 10 minutes (Variation is 10%)

Cooperative Extension

FIGURE 1.9 Automated microirrigation controls. Photo courtesy of Blake Mccullough-Sanden, University of California.

Source: Microirrigation for Crop Production, 2023, Ayars, Zaccaria, and Bali

Check pressure again at the pumping station ©

And talk to the irrigator (could be better than automation © You could have the most advanced and efficient system, but the irrigator could increase the set size; average application rate, P, and DU will all go down (Q is constant from irrigation

district)

Resources

Resources Cooperative Extension

Check Q again

Q: 1.5 cfs (448*1.5= 672 gpm)

Most flow meter have cumulative volume (ac-ft)

Check the cumulative volume at different times (1-2 hrs)

Example: at 8 am V: 5.700 ac-ft, at 10 am, V: 5.900 ac-ft

Area: 800 ft*2* 94 lines (40")

Area of irrigation set: 11.5 ac

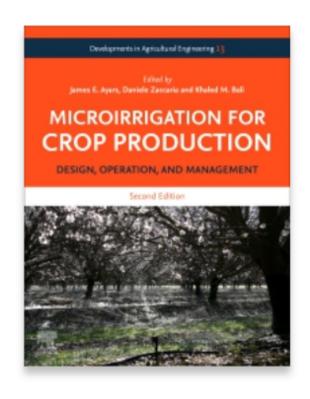
Depth applied in 2 hrs: 0.2"

Application rate: 0.1"/hr

Irrig. Time: 6 hrs

Depth applied: 0.6"

good for 2-3 days


if ET crop is 0.2"/day

alifornia ural Resour

Check soil moisture to let you know the soil moisture status

Drip Irrigation System Design

Microirrigation for Crop Production

Design, Operation, and Management

2nd Edition - November 21, 2023

Editors: James E. Ayars, Daniele Zaccaria, Khaled M. Bali

Language: English

Hardback ISBN: 9780323997195 • eBook ISBN: 9780323997201

Thank you

Q & A