INSECT PEST MANAGEMENT
ISSUES IN ALFALFA--APHIDS
Larry Godfrey (ldgodfrey@ucdavis.edu), Extension Entomology Specialist, University of California-Davis, Department of Entomology and Nematology, Davis, CA

- Peter Goodell, IPM Advisor, Kearney Agricultural Research & Extension Center
- Vonny Barlow, Entomology/IPM Advisor, Blythe, CA
- Eric Natwick, Entomology Advisor, Imperial County, Holtville, CA
- Rachael Long, Farm Advisor, Pest Management, Cooperative Extension Yolo County, Woodland, CA
Overview

• Recent challenges in alfalfa IPM
 ▪ Lep. larvae
 ▪ Cowpea aphids
 ▪ Alfalfa weevil
 ▪ Alfalfa stem nematode

• 2013-14 alfalfa IPM
 ▪ Egyptian alfalfa weevil/alfalfa weevil
 ▪ Blue alfalfa aphid
 ▪ Other aphid species
Pest Management in Alfalfa

2013-14
Origin of Integrated Pest Management (IPM)

• basic ideas setting the groundwork for IPM
• some of these came from observations in the alfalfa system
Weevil Concerns
Difficulties Controlling Alfalfa Weevil
Multiple Generations of Alfalfa Weevil
Aphids in Alfalfa

Blue Alfalfa Aphid Outbreak
2013-14
Aphids in Alfalfa

Spotted Alfalfa Aphid populations
2013
Aphid Biology

• Many species do not require sexual reproduction

• Rapid generation turnover
 – “Telescoped generations”
 – Viviparous female
 – Live birth

• Phloem feeders
 – Extract nitrogen
 – Concentrate sugars in excrement (honeydew)
Seasonal Occurrence of Aphids in Alfalfa

- **Pea Aphid**
 - Desert
 - Central Valley
- **Blue Alfalfa Aphid**
 - Desert
 - Central Valley
- **Spotted Alfalfa Aphid**
 - Desert
 - Central Valley
- **Cowpea Aphid**
 - Desert
 - Central Valley
Common Aphids in Alfalfa

• **Blue Alfalfa Aphid**
 – Antenna uniformly brown

• **Pea Aphid**
 – Narrow dark bands at tip of each segment
Common Aphids in Alfalfa

• **Cowpea Aphid**
 – Adult: shiny black
 – Nymph: slate grey

• **Spotted Alfalfa Aphid**
 A small, pale-yellow or grayish aphid with four to six rows of spined black spots on its back
Which of These Aphids is Blue Alfalfa Aphid?

- Blue Alfalfa
- Cowpea
- Pea Aphid
- Pink Form Pea
How Would You Know?

• Alfalfa Blog, UC Davis -
 http://ucanr.edu/blogs/Alfalfa/index.cfm

• IPM Identification Tips in Alfalfa PMG

• Additional Guides:
 – Barlow & Godfrey Aphid Guide
 – http://ucanr.edu/sites/CottonIPM/Useful_Resources/
Antennal Difference Between Aphids

Pea Aphid

Blue Alfalfa
Pea Aphid – *Acyrthosiphon pisum*

- Antenna have a dark band at the tip of each segment
- Spring and Fall populations
- More widely distributed on plant
- Feeding does NOT result in stunting

Blue Alfalfa – *Acyrthosiphon kondoi*

- Antenna are uniformly dark brown in color
- Late winter or spring only
- More tolerant of cool temperatures
- Prefers terminal area of plant
- Injects feeding toxin, stunts plants, especially young plants
Action Thresholds
Aphids per Stem

<table>
<thead>
<tr>
<th>Plant Height</th>
<th>Pea Aphid</th>
<th>Blue Alfalfa Aphid</th>
<th>Cowpea Aphid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 10 in.</td>
<td>40 to 50</td>
<td>10 to 12</td>
<td>10 – 12</td>
</tr>
<tr>
<td>10 to 20 in.</td>
<td>70 to 80</td>
<td>40 to 50</td>
<td>40 - 50</td>
</tr>
<tr>
<td>Over 20 in.</td>
<td>100 +</td>
<td>40 to 50</td>
<td>40 - 50</td>
</tr>
</tbody>
</table>
Aphids Can Inject **Toxins** and Produce **Honeydew**

- Spotted Alfalfa Aphid
 - Very Potent
 - Copious Amounts

- Cowpea Aphid

- Blue Alfalfa Aphid
 - Less Potent

- Pea Aphid
 - Less Honeydew
History - Aphids in Alfalfa

• Pea Aphid - in the western U.S. for 100+ years
• Spotted Alfalfa Aphid – first found in 1950’s
• Blue Alfalfa Aphid - first found in CA in Kern Co. near Bakersfield in 1974 and Imperial Co. in 1975
• Cowpea Aphid – started damaging alfalfa ~10 years ago
Management - Aphids in Alfalfa

<table>
<thead>
<tr>
<th></th>
<th>Insecticides</th>
<th>Cultural</th>
<th>Biological</th>
<th>Host Plant Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pea Aphid</td>
<td>X</td>
<td></td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>Blue Alfalfa Aphid</td>
<td>X</td>
<td></td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Spotted Alfalfa Aphid</td>
<td>X</td>
<td></td>
<td>X</td>
<td>XX</td>
</tr>
<tr>
<td>Cowpea Aphid</td>
<td>XX</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Blue Alfalfa Aphid Outbreak
2013-14
EAW & Aphid Trial, Davis
March 2013

Treated 13 March

Source: Larry Godfrey
EAW & Aphid Trial, Davis
March 2013

Source: Larry Godfrey
EAW & Aphid Trial, Davis
March 2013

Source: Larry Godfrey
EAW & Aphid Trial, Imperial Valley 28 February 2013

Source: Eric Natwick
Aphid Trial, Imperial Valley
17 January 2013

Percent of Check, Post Treatment Average

Source: Eric Natwick
Outbreaks Are Complex Events

- **Aphids**
 - Development of Tolerance
 - Change in behavior

- **Conditions Favorable for Outbreak**
- **Conditions not favorable for cutting or treating**
- **Reduced Natural Enemy Activity**

- **Variety Selection**
- **Host Plant Resistance**
- **Production Practices**
- **Insecticide Use & Pattern**

- **Conditions Favorable for 1st Cutting**
- **Enhanced Natural Enemy Activity**

- **Us**
- **Environment**
Characteristics of BAA Outbreak

• Resurgence of BAA, 1-2 weeks post weevil
• Retreatment required
• Control difficult, residual control lacking
• **Spotty, not widespread, not every field**
• Timing of outbreak varies by location
• Some noted low abundance of ladybird beetles
• Damage substantial in some cases
• Lingering effect of toxin into next cutting
Outbreaks Reported 2013-14
Outbreaks Are Complex Events

Aphids

Development of Tolerance
Change in behavior

Variety Selection
Host Plant Resistance
Production Practices
Insecticide Use & Pattern

Conditions Favorable for Outbreak
Conditions not favorable for cutting or treating
Reduced Natural Enemy Activity

Conditions Favorable for 1st Cutting
Enhanced Natural Enemy Activity

Us

Environment
Environment –
Fungus in Aphid Population
Environment – Natural Enemies

- Slow Development of Biological Control
 - Dry winter
 - Windy spring

- Absence of Big-eyed bugs??

<table>
<thead>
<tr>
<th></th>
<th># per 50 sweeps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>BEB adults</td>
<td>6.25</td>
</tr>
<tr>
<td>BEB nymphs</td>
<td>1.0</td>
</tr>
</tbody>
</table>
“Numbers Game”
Change in the Aphid

- Insecticide Resistance
- New Biotype of Aphid
- Failure of Host Plant Resistance
Is There Resistance?

- Dow AgroSciences conducted quick “dip assay’
 - No evidence of increased tolerance to chlorpyrifos
- Field trials - limited evidence of resistance
- Need colony of “untreated” BAA
What Are People Speculating Was the Cause of Outbreak?

- Insecticide Resistance - Evidence Not Apparent
- New Biotype
 - “Nebraska”
 - pursued lead but found no evidence
- Failure of Host Plant Resistance
 - usually happens more gradually
 - is a report of this same aphid overcoming host plant resistance in Australia
- RR alfalfa
 - No evidence
What Are People Speculating Was the Cause of Outbreak?

• Failure of Host Plant Resistance

• Mainstay of management since BAA and SAA introductions
 ❖ Host Plant Resistance - antibiosis is involved
 ❖ Resistance is virtually lost at 60 °F
 ❖ Most active under hot conditions
 ❖ Aphids attempt to “evolve” to overcome resistance
Host Plant Resistance to Blue Alfalfa Aphid

Source: NAFA 2013
Host Plant Resistance to Blue Alfalfa Aphid

Source: NAFA 2013
Host Plant Resistance to Blue Alfalfa Aphid
Host Plant Resistance to Blue Alfalfa Aphid
What People Were Using to Control Pests

• Weevil
 – Warrior (or other lambda cyhalothrin)
 – Steward
 – Cobalt (chlorpyrifos & lambda cyhalothrin, premix)

• Aphid
 – Chlorpyrifos, malathion with weevil treatment
 – Dimethoate second treatment
 – Lannate in worst conditions
It’s a Numbers Game

- 95% efficacy may leave too many aphids, especially if being concentrated in windrows (e.g. “early cutting”)
- Use of broad spectrum insecticides reduce your biocontrol assets in the field
- Population more likely to rebound
Damage: stunting, reduced vigor

Dos Palos, Merced Co

9 inches tall
30 days post 1st cutting

High Desert, Lancaster, CA
What Losses Did People Report Due to BAA?

<table>
<thead>
<tr>
<th>Region</th>
<th>Acres Infested</th>
<th>Loss</th>
<th>Stand Age</th>
<th>Damage Severity Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Valley</td>
<td>> 1000 acres</td>
<td>$70/ac, 1/3 ton</td>
<td>3rd Year</td>
<td>4</td>
</tr>
<tr>
<td>Dos Palos</td>
<td>500-1000 acres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dos Palos</td>
<td>>1000 acres</td>
<td>$250/ac for 2 cuttings</td>
<td>3rd Year</td>
<td>5</td>
</tr>
<tr>
<td>Dos Palos</td>
<td>$150/acre</td>
<td></td>
<td>2cd Year</td>
<td>5</td>
</tr>
<tr>
<td>Buttonwillow</td>
<td>>1000 acres</td>
<td>½ - ¾ bale</td>
<td>2cd & 3rd Year</td>
<td>3</td>
</tr>
<tr>
<td>Dos Palos</td>
<td>85 acres</td>
<td>$90/ac</td>
<td>second</td>
<td>5</td>
</tr>
<tr>
<td>Dos Palos</td>
<td>100-500</td>
<td>40% reduction</td>
<td>3-5th</td>
<td>4</td>
</tr>
<tr>
<td>Palo Verde Valley</td>
<td>> 1000</td>
<td>$100/acre</td>
<td>2 months to 3rd Year</td>
<td>5</td>
</tr>
<tr>
<td>Palo Verde</td>
<td>> 1000</td>
<td>$125/acre</td>
<td>4th Year</td>
<td>5</td>
</tr>
</tbody>
</table>
So What Do We Know?

- Cause of outbreak unknown
- OPs did not sufficiently control BAA
- Low aphid densities were allowed to get into second cutting
- Distribution pattern is odd
 - First year fields, no insecticides (winged)
 - Very spotty
- Damage and loss occurred
Where We Going?

• 24c label for Beleaf 50SG – 62 day preharvest interval

• three other new insecticides with activity on aphids nearing registration

• need for research to provide answers to some of the outstanding questions