Evaluation of Nitrogen Stabilizers to Improve Corn Yield and Plant Nitrogen Status

Weed Identification: A Crucial Component of Weed Management

Evaluation of Grafted Tomato Plants for California Fresh Market Production Systems

Walnut Husk Fly Management

MAY/JUNE 2019

VINEYARD REVIEW
pages 36-50
Grapevine trunk diseases (GTD) are currently considered one of the most important challenges for viticulture worldwide. These destructive diseases are caused by a broad range of wood-colonizing fungal pathogens, which primarily infect grapevines through pruning wounds. In most occasions, a single vine can be infected by more than one of these pathogens. The economic impact of GTD can be significant in both young and mature vineyards. Characteristic symptoms include poor vigor, distorted leaves and shoots, shoot and tendril dieback and berry specks caused by fungal toxins produced by some of these pathogens. Perennial cankers produced by canker-causing fungi on grapevine cause spur, cordon and trunk dieback and the eventual death of the entire vine.

Epidemiology

Most of the fungal pathogens responsible for GTD produce overwintering fruiting structures containing the spores of the fungus. When environmental conditions are favorable, these fruiting bodies release the spores into the environment. Spores will land on susceptible pruning wounds and will initiate infection completing their life cycle. In California, research suggests that the majority of GTD spores are released during winter (December to February) following primarily through not always precipitation events. GTD fungal pathogens have a broad host range and in California are known to cause dieback in many different native or introduced tree species and also in other woody perennial crops, including tree fruits and nut trees. Therefore, the source of GTD inoculum (spores) can come into a vineyard from multiple sources.

Continued on Page 44
BIOSTIMULANT FERTILIZERS, PEST CONTROL & BIO FUNGICIDE

INCREASE FLOWERING & FRUIT PRODUCTION WHEN USING PURE PROTEIN DRY

PURE PROTEIN DRY
15-1-1
PRIMO AMINOS

18 TYPES OF AMINO ACIDS
CONTAINS 80% + AMINO ACIDS
100% WATER SOLUBLE

WINE GRAPE NUTRITION FOR EVERY STAGE OF GROWTH

Weed-a-Way
CONTACT AND PRE EMERGENT HERBICIDE

EX-ICUTE™ & RID-BUGS

25(b) OILS MINIMUM RISK ORGANIC INSECTICIDES AND BIO-FUNGICIDE

SALES CONTACT INFO:
JOE HASLETT
(805) 748-4033
joehaslett.oap@gmail.com

ED ZYBURA
(805) 550-7776
edzybura@charter.net

www.OrganicAGProducts.com
Guaranteed by AZ ENTERPRISES INC DBA ORGANIC AG PRODUCTS
2367 Brant Street • Arroyo Grande, CA 93420
Figure 1. Leaf (tiger stripes) (A), fruit (black measles) (B) and vascular (C) symptoms caused by esca disease complex. Esca (black measles) and petri disease are primarily caused by the vascular pathogens *Phaeomoniella chlamydospora* and *Phaeoacremonium minimum*, which are also involved in Petri disease in young plants (D).

Figure 2. In mature plants, several basidiomycetes fungi (primarily in the genera *Fomitiporia*, *Fomitiporella*, *Inocutis*, *Inonotus*, and *Phellinus*) play also a role in disease and symptoms development. Characteristic symptoms are a white rot in the vascular system in many occasions observed as a yellowish-spongy wood.

MANAGEMENT IN NURSERY:

- Treat pruning wounds on mother plants to prevent new infections
- Sanitation in mother fields and during the entire nursery process
- Disinfect grafting machines regularly
- Reduction of the cutting hydration period
- Apply control products (chemicals or biologicals) as a dip after grafting, before storage and/or before dispatch
- Hot water treatment of dormant nursery plants prior to dispatch

(Continued on Page 46)
WE WILL PUMP YOU UP
WITH OUR MYCORRHIZAL PRODUCTS

STIMULATES ROOT GROWTH
IMPROVES DROUGHT TOLERANCE

REDUCED TRANSPLANT SHOCK
IMPROVES EARLY GROWTH

IMPROVES SOIL STRUCTURE
LESS FERTILIZER REQUIRED

POWER UP YOUR PLANTS
Ask us about our other soil care products.

• BACTERIAL INOCULANTS • SOIL PRODUCTS • BIOLOGICAL FOOD PRODUCTS
• MICRO NUTRIENTS • FOLIAR NUTRIENTS

Contact Us Today at 1-800-279-9567
CALLNRC.COM
Use the cleanest plant material available when establishing new vineyards.

Minimize stress conditions on young vines after planting.

In California, delayed pruning has been shown to minimize infection of pruning wounds as wounds are past the high disease pressure period of winter months.

In vertical shoot position (VSP) systems, double pruning has shown to facilitate late pruning of large acreage vineyards and thus, reduce infection.

Prune dead shoots, spurs and cordons below the symptomatic tissue (at least a few inches past the last symptomatic wood).

Make a clean and smooth pruning cut to speed up the callusing process at the pruning wound.

Sanitation is very important in the vineyard. Remove pruned and infected plant materials to prevent the development and increase of GTD fungi overwintering structures in the vineyard.

Protection of pruning wounds with effective registered chemicals and/or biological control agents is the most effective way to prevent new infections from airborne spores of GTD fungal pathogens. More than one application may be necessary to protect the pruning wound during its susceptible time period.

Remedial surgery, where visible infected parts of the vine (spurs, cordons and/or trunk) are removed, can be an effective strategy to eradicate the pathogen from the vine (primarily when cuts are done lower down on the trunk about 20 to 30 cm above ground) and thus, prolong the lifespan of vineyards.

Figure 3. Botryosphaeria dieback, commonly known in California as ‘Bot canker’ is caused by multiple species in the Botryosphaeriaceae family. Characteristic symptoms are the lack of spring growth of infected areas, including cordons (A) or spurs (B). Cross sections of infected parts reveal a wedge-shape canker (C). The GTD disease known as Phomopsis dieback and primarily caused by the fungus Phomopsis viticola shows very similar symptoms as Botryosphaeria dieback.

Figure 4. Symptoms of Eutypa dieback, caused by the fungal pathogen Eutypa lata and several other Diatrypaceae species, are characterized by distorted and chlorotic leaves and short internodes (A) and by wedge-shape cankers (B).

Free Access Literature:
https://doi.org/10.1094/PDIS-04-17-0512-FE
https://ucanr.edu/sites/eskalenlab/

Comments about this article? We want to hear from you. Feel free to email us at article@jcsmarketinginc.com