Control of powdery mildew in grapes: 2007 field trials

Christopher N. Janousek, Jacob D. Lorber, and W. Douglas Gubler

Department of Plant Pathology, University of California, Davis, CA 95616.

University of California Cooperative Extension, Department of Plant Pathology, University of California, Davis, October 2007

Address correspondence to: wdgubler@ucdavis.edu Published at <u>http://plantpathology.ucdavis.edu/ext/gubler/fungtrials2007</u>, October 2007. Copyright © 2007 by the Regents of the University of California, Davis campus. All Rights Reserved.

2007 Grape powdery mildew trials. Department of Plant Pathology, University of California, Davis.

Contents

.

I.	Introduction						3
II.	Materials and methods .						3
Α.	Layout of trials 1-5 .						3
В.	Layout of trial 6						3
C.	Experimental treatments (trials 1-6).						4
D.	Fungicide application history .						8
E.	Trial maps						14
F.	Disease evaluation and statistical analysis						18
III.	Results and discussion .						18
A.	Disease onset and Gubler-Thomas Risk Ind	lex for th	e 2007	field sea	son.		18
В.	Trial 1 disease incidence and severity						20
C.	Trial 2 disease incidence and severity						22
D.	Trial 3 disease incidence and severity						24
E.	Trial 4 disease incidence and severity						26
F.	Trial 5 disease incidence and severity						28
G.	Trial 6 disease incidence and severity						30
H.	Treatment effect sizes according to chemica	al class					32
IV.	References						36
V.	Acknowledgements						36
VI.	Appendix: fungicide materials used in the t						37

I. Introduction

Powdery mildew is a pervasive foliar and fruit disease on cultivated grape (*Vitis vinifera*) caused by the pathogen *Erysiphe necator*. In the Sacramento River delta region of California, disease onset typically occurs during April or May. In the absence of preventative fungicide applications, pathogen populations can quickly overwhelm crops and render them unmarketable.

We conducted six field trials in a mature Chardonnay vineyard in Sacramento County to determine the efficacy of selected chemical and biological fungicides (including new experimental materials) against the development of powdery mildew. Each trial consisted of an unsprayed control treatment and several fungicide treatments applied to 2-vine experimental plots. Water controls were added to two trials. We evaluated the overall performance of the various materials using analysis of variance coupled with calculation of standardized effect sizes.

II. Materials and Methods

A. Layout of Trials 1-5

Experimental design	Complete randomized design wi Randomized complete block des		s 2-5).
Experimental unit	2 vines = 1 plot		
Row spacing	11 ft	Vine spacing within row	7 ft
Plot unit area	154 ft^2		
Area/treatment	1008 ft^2 (6 reps. = 1 treatment)	Area/treatment	0.021 acre/treatment
	150 gallons		3.2 gallons
Volume water/acre	200 gallons	Vol. water/treatment	4.2 gallons
	250 gallons		5.2 gallons
Application method	Handgun sprayers (25 or 50 galle	on capacity) at about 100-1	75 PSI.

B. Layout of Trial 6

Experimental design	Randomized complete block des	ign with 8 replicates.	
Experimental unit	2 vines = 1 plot		
Row spacing	11 ft	Vine spacing within row	7 ft
Plot unit area	154 ft ²		
Area/treatment	1232 ft ² (8 reps. = 1 treatment)	Area/treatment	0.028 acre/treatment
	150 gallons		4.2 gallons
Volume water/acre	200 gallons	Vol. water/treatment	5.6 gallons
	250 gallons		7.0 gallons
Application mathed	Handgun sprayers (25 or 50 gall	on capacity) dispensed at a	bout 100-175 PSI
Application method	(Biological products sprayed at	≤ 145 PSI).	

Prior to commencement of the trials, the grower applied 1% JMS Stylet Oil (on 2 April 2007) and sulfur (on 13 April, 16 April, and 23 April 2007) across the entire research area.

C. Experimental treatments

Trial 1

Trial 1 consisted of an unsprayed control, a water only control, and 12 fungicide treatments all applied at 21 day intervals (4 total applications were made during the growing season). A7402 (difenoconazole), A13703 (difenoconazole + azoxystrobin) and A16001 (difenoconazole + cyprodinil) are experimental materials produced by Syngenta Corporation. We also tested the performance of another experimental material, USF2010 (tebuconazole + trifloxystrobin), against Flint (triflozystrobin).

Trt no.	Flag	Product(s)	Frequency (days)	FP ¹ /Acre	FP/Treatment
1	RC	Unsprayed control	none	none	none
2	GS	Water control	21	water only	water only
3	GKD	USF 2010 50WG	21	3.0 oz	1.8 g
4	BS	USF 2010 50WG	21	4.0 oz	2.4 g
5	Pu	A7402	21	3.0 fl oz	1.8 ml
6	LG	A7402	21	4.0 fl oz	2.5 ml
7	RD	A7402	21	5.0 fl oz	3.1 ml
8	YS	A7402	21	7.0 fl oz	4.4 ml
9	OYS	A13703	21	8.0 fl oz	5.0 ml
10	OKS	A16001	21	11.5 fl oz	7.2 ml
11	YKS	Rally 40WP	21	5.0 oz	3.0 g
12	OC	Flint 50WG	21	2.5 oz	1.5 g
13	PKD	A7402 alt	21	7.0 fl oz alt	4.1 ml alt
15	IKD	Flint 50WG	21	2.0 oz	1.2 g
14	GD	Quintec 2.08SC then Quintec 2.08SC alt ²	21	6.6 fl oz then 6.6 fl oz alt	4.1 ml then 4.1 ml alt
		Flint 50WG		2.0 oz	1.2 g

Notes: ¹ FP=formulated, tank-mixed product. ² alt = alternated with.

Trial 2

Trial 2 was composed principally of treatments of Topguard (flutriafol) at different spray intervals and product concentrations. An industry standard, Quintec, and a confidential experimental product (EXP90As) were also included.

Trt no.	Flag	Product	Frequency (days)	FP/Acre	FP/Treatment
1	RC	Unsprayed control	none	none	none
2	KS	Quintec 2.08SC	21	5.0 fl oz	3.1 ml
3	PKD	EXP90A	14	0.088 lb ai^1	2.8 ml
4	Y	EXP90A	14	0.176 lb ai	5.6 ml
5	GD	Topguard	10	5.0 fl oz	3.1 ml
6	YS	Topguard	10	8.0 fl oz	5.1 ml
7	RD	Topguard	10	10.0 fl oz	6.2 ml
8	GKC	Topguard	14	5.0 fl oz	3.1 ml
9	OKS	Topguard	14	8.0 fl oz	5.0 ml
10	YKS	Topguard	14	10.0 fl oz	6.2 ml
11	RKC	Topguard	17	5.0 fl oz	3.1 ml
12	0	Topguard	17	8.0 fl oz	5.0 ml
13	В	Topguard	17	10.0 fl oz	6.2 ml

Note: 1 ai = active ingredient

In trial 3, three new copper formulations (Badge SC, Badge DF and Kentan DF) were tested in tandem with organic copper hydroxide (Kocide 3000). The demethylase inhibitors Rally, Elite, Eminent and Procure were included in the trial along with 2 concentrations of Sporan, a mixture of natural aromatic oils.

Trt no.	Flag	Product(s)	Frequency (days)	FP/Acre	FP/Treatment
1	RC	Unsprayed control	none	none	none
2	BD	Rally 40W	14	4.0 oz	2.4 g
3	RD	Elite 45DF	14	4.0 oz	2.4 g
4	YKS	Eminent 125ME	14	4.0 fl oz	2.5 ml
5	YS	Eminent 125ME	14	5.0 fl oz	3.1 ml
6	PKD	Eminent 125ME	14-21	5.0 fl oz	3.1 ml
7	GS	Procure 480SC	14	6.0 fl oz	3.8 ml
		Procure 480SC alt		6.0 fl oz	3.8 ml
8	GKD	Pristine +	14	10.5 oz	6.2 g
		Latron B-1956		400 ml	8.4 ml
9	LG	JMS Stylet Oil (single application)	14	0.5 %	61 ml (150 gal)
,	ĽŰ	then Kocide 3000		1.5 lb	14.4 g
10	Pu	Badge 2.27SC	14	1.5 pt^1	15.0 ml
11	YKD	Badge 28DF	14	$1.5 \ lb^1$	14.4 g
12	OKS	Kentan 40DF	14	$1.5 \ lb^1$	14.4 g
		Sporan +		3.0 pt	29.9 ml
13	OS	Silwet L-77	14	0.03 %	3.6 ml (150 gal)
15	05		14		4.8 ml (200 gal)
					6.0 ml (250 gal)
		Sporan +		6.0 pt	59.7 ml
14	К	Silwet L-77	14	0.03 %	3.6 ml (150 gal)
14	K		14		4.8 ml (200 gal)
					6.0 ml (250 gal)

Note: ¹ 2.0 pt/acre or 2.0 lb/acre used for the first application.

Trial 4

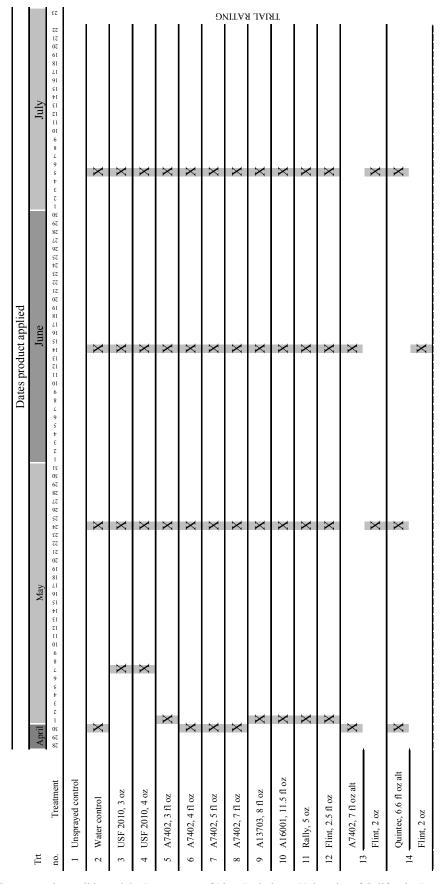
In trial 4, the experimental products LEM17 (Dupont) and BAS5600 00F (BASF Corp.) were tested at 14 and 21 day spray intervals. Kelpak, a seaweed-derived fertilizer, was also included in the trial. The performances of Pristine and the experimental BAS560 00F were compared with and without use of the spray adjuvant Silwet L-77.

Trt no.	Flag	Product(s)	Frequency (days)	FP/Acre	FP/Treatment
1	RC	Unsprayed control	none	none	none
2	В	LEM17 SC	14	3.0 fl oz	1.8 ml
3	RKS	LEM17 SC	14	4.3 fl oz	2.7 ml
4	GS	LEM17 SC	21	4.3 fl oz	2.7 ml
5	OKS	LEM17 SC	14	5.0 fl oz	3.1 ml
6	BKS	LEM17 SC	21	5.0 fl oz	3.1 ml
7	YKS	Pristine 38WDG	14	8.0 oz	4.8 g
8	GKC	Pristine 38WDG	21	10.5 oz	6.2 g
9	BD	Pristine 38WDG +	21	10.5 oz	6.2 g
,	DD	Silwet L-77		4.0 fl oz	2.5 ml
10	PC	BAS 560 00F	14	10.24 fl oz	6.4 ml
11	OKD	BAS 560 00F	21	15.36 fl oz	9.5 ml
12	YC	BAS 560 00F +	14	10.24 fl oz	6.4 ml
12	IC	Silwet L-77	14	4.0 fl oz	2.5 ml
13	OD	BAS 560 00F +	21	15.36 fl oz	9.5 ml
15	UD	Silwet L-77	21	4.0 fl oz	2.5 ml
14	KS	Kelpak	14	3.0 pt	29.9 ml

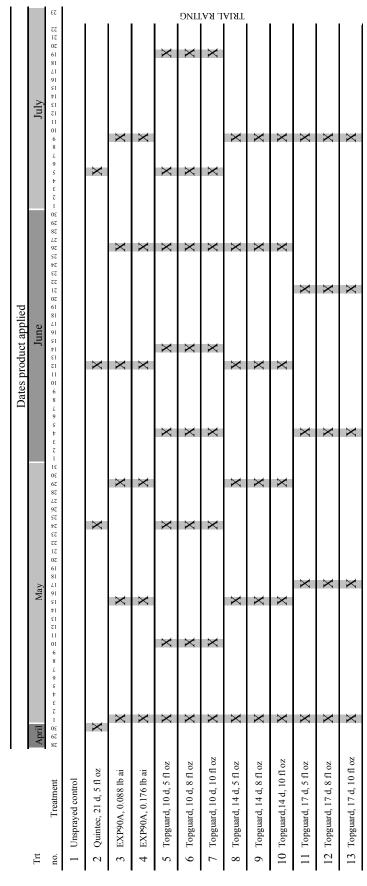
2007 Grape powdery mildew trials. Department of Plant Pathology, University of California, Davis.

The experimental products Phyton-016-B (Phyton Corp.), V-10118 (Valent), Evito (Arysta), and SilverDYNE (a silver-based water purification product) were examined in this trial. Quintec, Rally alternated with Quintec, and JMS Stylet Oil (mineral oil), all registered products, were also evaluated.

Trt no.	Flag	Product(s)	Frequency (days)	FP/Acre	FP/Treatment
1	RC	Unsprayed control	none	none	none
2	KD	Phyton-016-B	7	20 fl oz	12.5 ml
3	BS	Phyton-016-B	7	30 fl oz	18.7 ml
4	YC	V-10118	14	0.02 lb ai	3.9 ml
5	RKS	V-10118	14	0.03 lb ai	5.9 ml
6	PS	Evito 480SC	14	5.0 fl oz	3.1 ml
7	GKC	Endorse 11.3DF + Evito 480SC	14	16.0 oz 5.0 fl oz	9.5 g 3.1 ml
8	KS	Endorse 11.3DF + Evito 480SC	14	8.0 oz 5.0 fl oz	4.8 g 3.1 ml
9	OC	JMS Stylet Oil	14	0.5 %	61 ml (150 gal) 81 ml (200 gal) 101 ml (250 gal)
10	GS	SilverDYNE	7	0.04%	6.3 ml (200 gal) 7.9 ml (250 gal)
11	YKS	SilverDYNE	7	0.06%	9.4 ml (200 gal) 11.8 ml (250 gal)
12	BKS	SilverDYNE	7	0.08%	12.6 ml (200 gal) 15.8 ml (250 gal)
13	PKD	Rally + Induce ¹ alt Quintec + Induce	14	4.0 oz + 0.125% 4.0 fl oz 0.125%	2.4 g 20 ml (200 gal) 25 ml (250 gal) 2.5 ml 20 ml (200 gal) 25 ml (250 gal)
14	W	Quintec + Induce ¹	21	6.6 fl oz 0.125%	4.1 ml 20 ml (200 gal) 25 ml (250 gal)
15	BC	Quintec + Induce ¹	14	4.0 fl oz 0.125%	2.5 ml 20 ml (200 gal) 25 ml (250 gal)


Note: ¹ Induce adjuvant not used for the first application made on 4 May 2007.

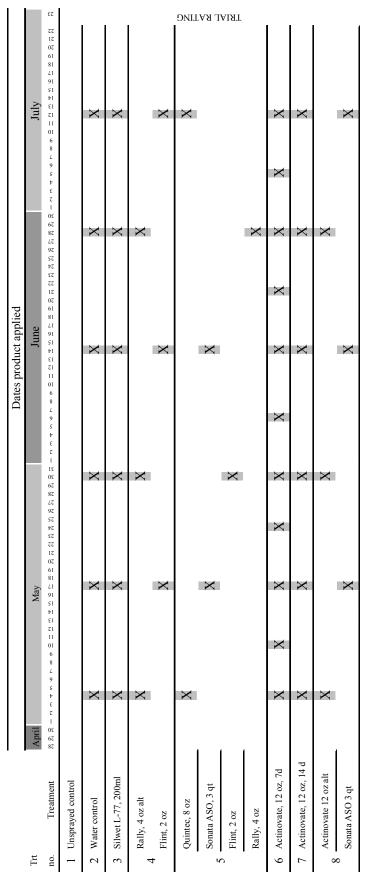
Trial 6 consisted of an evaluation of several biological products. Actinovate (*Steptomyces lydicus* from Natural Industries, Inc.) was tested at the high end of the label rate (12 oz/acre) at 7 and 14 day intervals and in rotation with Sonata ASO (*Bacillus pumilis* from AgraQuest, Inc.). Sonata ASO was also evaluated in a multi-product regime that included standard synthetic fungicides such as Quintec and Rally. Procedural controls (water only and water + the adjuvant Silwet L-77) were incorporated into the trial.


Trt no.	Flag	Product(s)	Rate (day)	FP/Acre	FP/Treatment
1	YS	Unsprayed control	none	none	none
2	RKC	Water control	14	water only	water only
3	KC	Silwet L-77 control	14	200 ml	5.7 ml
4	OKD	Rally alt Flint	14	4.0 oz 2.0 oz	3.2 g 1.6 g
5	GS	Quintec (application A) then Sonata ASO (B) then Flint (C) then Sonata ASO (D) then Rally (E) then Quintec (F)	14	8.0 fl oz 3.0 qt 2.0 oz 3.0 qt 4.0 oz 8.0 fl oz	6.7 ml 81 ml then 1.6 g then 81 ml then 3.2 g alt 6.7 ml
6	LG	Actinovate + Silwet L-77	7	12.0 oz 200 ml	9.6 g 5.7 ml
7	BD	Actinovate + Silwet L-77	14	12.0 oz 200 ml	9.6 g 5.7 ml
8	YKD	Actinovate + Silwet L-77 alt Sonata ASO + Silwet L-77	14	12.0 oz 200 ml alt 3.0 qt 200 ml	9.6 g 5.7 ml alt 81 ml 5.7 ml

Please note that the treatments described in this report were conducted for experimental purposes only and some crops treated in a similar manner may not be suitable for commercial use or consumption.

D. Fungicide applications: Trial 1

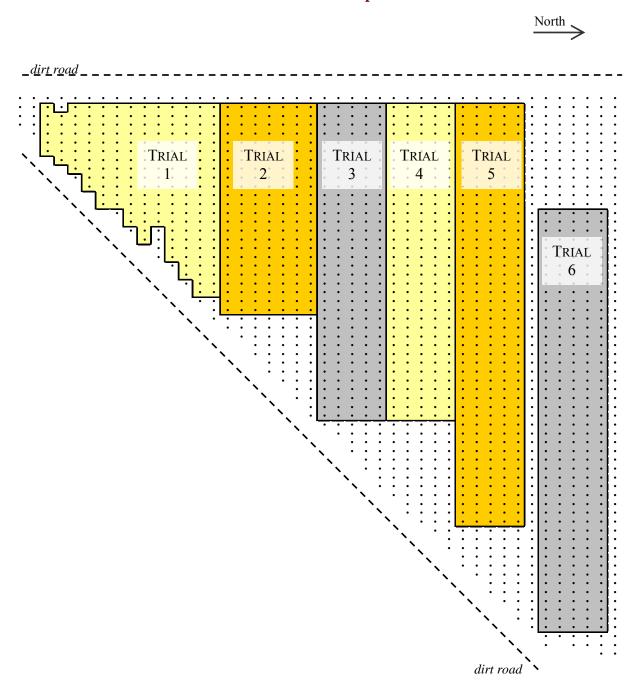
2007 Grape powdery mildew trials. Department of Plant Pathology, University of California, Davis.


International conditional cond					Dates product applied			
Teatmant Reference and a manufactory of the manuf	Trt	April	May		June		July	
mono x x x x x x x x x x x x x x x nom x x x x x x x x nom x <		8 9 2 3 30 30 5 2	51 50 18 18 12 17 17 13 13 13 13 13 13	4 3 3 30 30 50 52 52 52 54 54	20 16 17 17 17 13 13 13 13 13 14 13 13 14 13 14 13 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	5 30 58 58 58 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	11 91 13 13 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	55 51 50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Unsprayed control							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		X	X	X	X	X	X	
		Х	Х	Х	Х	Х	Х	
1ex X X X X X X X $1ex$: $1+21d$ X X X X X X $1ex$: $1+21d$ X X X X X ex		X	Х	X	X	X	Х	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		X	X	X	X	X	X	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				X	X		X	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		X	X	X	X	X	X	
Soz X X Ji, then X X J.1.5 lb X X J.1.5 lb X X Sc, 1.5 pt X X St, 1.5 lb X X		Х		X		Х		
Nilthen X </td <td></td> <td></td> <td>Х</td> <td></td> <td>X</td> <td></td> <td>Х</td> <td>1 1 1 1 1</td>			Х		X		Х	1 1 1 1 1
0,1.5 lb X X X Sc, 1.5 pt X X X X Sc, 1.5 pt X X X X (,1.5 lb X X X X		X						
Sc, L5 pt X X X X ;, L5 lb X X X X b X X X X b X X X X X X X X X X X X X X X X X X X	-		X	X	X	X	Х	
(1.5 lb) X X X X lb X X X X lb X X X X x X X X X X X X X X X X X X X	10 Badge 2.27 SC, 1.5 pt	Х	Х	Х	Х	Х	Х	
b X X X X X X X X X X X X X X X X X X X	11 Badge 28DF, 1.5 lb	Х	Х	Х	Х	Х	Х	
X X X X X X	12 Kentan, 1.5 lb	Х	Х	Х	Х	Х	Х	
X X X X X	13 Sporan, 3 pt	Х	Х	Х	Х	Х	Х	
	14 Sporan, 6 pt	X	Х	Х	X	Х	X	

10

				Dates product applied		
Trt	April	May		June		July
no. Treatment	9 3 30 30 30 58 58 58	50 18 12 19 14 13 13 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	50 13 14 14 15 13 15 15 17 10 10 8 2 9 5	3 5 30 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53	53 51 51 51 12 13 14 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17
1 Unsprayed control						
2 LEM17, 3 fl oz, 14 d	X	X	X	X	X	X
3 LEM17, 4.3 fl oz, 14 d	Х	Х	Х	Х	Х	Х
4 LEM17, 4.3 fl oz, 21 d	Х	Х	Х	Х		X
5 LEM17, 5 fl oz, 14 d	Х	Х	Х	Х	Х	Х
6 LEM17, 5 fl oz, 21 d	Х	Х	X	X		X
7 Pristine, 8 oz, 14 d	Х	Х	Х	X	Х	X
8 Pristine, 10.5 oz, 21 d	Х		Х	Х		X
Pristine, 10.5 oz + Silwet L-77, 21 d	X		Х	X		Х
$10 {\rm BAS \ 56000F, \ 10.2 \ fl \ oz, \ 14 \ d}$	X	X	Х	X	Х	Х
11 BAS 5600F, 15.4 fl oz, 21 d	X		X	X		X
12 BAS 56000F, 10.2 fl oz + Silwet L-77, 14 d	+	X	Х	X	Х	X
13 BAS 56000F, 15.4 fl oz + Silwet L-77, 21 d	+		X	X		X
14 Kelpak, 3 pt	X	Х	Х	Х	Х	Х

							Dates	Dates product applied	ed					1
Trt	Anril			Mav				June				July		
no. Treatment	4 5 3 30 30 58 58	8 2 9 5	13 71 11 01 6	07 61 81	52 52 52 54 53 53 53 53 53	3 1 31 30 50 58 58	10 6 8 2 9 7 7	11 19 12 13 14 13 13 13 11	57 54 53 53 50 50 18 18	1 30 58 58 52 52	8 9 9 4 3 5 5 5	51 17	55 51 50 16 18 12 12	53
1 Unsprayed control														
2 Phyton-016-B, 20 fl oz	X		X	X	X	X	X	X	X	X	X	X	X	ī
3 Phyton-016-B, 30 fl oz	X		X	X	X	X	X	Х	X	X	X	X	X	
4 V-10118, 14 d, 0.02 lb ai	X			X		Х		X		Х		Х		
5 V-10118, 14 d, 0.03 lb ai	X			Х		Х		X		X		X		
6 Evito, 5 fl oz	X			X		Х		X		Х		X		
7 Evito + Endorse, 16 oz	X			X		X		X		X		X		Ð
8 Evito + Endorse, 8 oz	X	~		X		X		X		X		X		VITAS
9 JMS Stylet Oil, 0.5%	X			X		Х		X		X				I JAL
10 SilverDYNE, 0.04%	X		X	Х	Х	х	X	Х	Х	Х	Х	Х	X	ТR
11 SilverDYNE, 0.06%	X		X	X	Х	Х	X	Х	Х	Х	Х	Х	Х	
12 SilverDYNE, 0.08%	X		X	X	Х	X	X	Х	Х	Х	Х	Х	X	
Rally + Induce alt	X					X				X				
Quintec + Induce				X				X				X		
14 Quintec + Induce, 21 d	X				Х			Х			Х			
15 Quintec + Induce, 14 d	X			X		X		X		X		X		1


2007 Grape powdery mildew trials. Department of Plant Pathology, University of California, Davis.

F. Trial maps

The trials were conducted in a Chardonnay vineyard at Herzog Ranch. Due to the configuration of the general research area, trial 1 was organized in a complete randomized design; all other trials were conducted in a randomized complete block design with blocks oriented in an east-west direction and perpendicular to irrigation. The overview map below is followed by 6 maps showing the specific location of treatment plots in each experiment. All trials contain additional flags for one or more treatments that are not included in the present report.

Trial 1

۰ ۲		
r	21	1
 		_

31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	4		47	48	49	50	51	52	Vineyard row
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_		•	•	•	•	•	•	
•	•	OYS YKS	Pu .	GD	OKS	GKI	GS	ΟYS	KC	GKI	GS	PKD	RC	ΟYS	2770		В	RD	RKC	GKC	PKD	Υ	Block 1
•	•	OYS	YS F	LG	PKD	RD	OKS	GD	Pu	OKS	PKD	ΥS	GD	OC	<u> </u>		OKS	RC	KC	KS	GD	ΥS	Blo
		KC	OKS Y	GS	BS	GS	BS	LG	GD	GKI YKS	OC	GKL YKS	RD	BS	Ca		0	GKC	Υ	GD	RKC	KC	ok 2
			Ň	KC	ΓG	00	ΥS	BS	OKS	GKI	KC	GKL	Pu	ΥS	а	ן ב	YKS	OKS	PKD	RD	\mathbf{YS}	KS	Block 2
				•	Pu	YKS	GS	ΥS	BS	OC	BS	RC	PKD	RC	NK C		KS	GD	RD	KC	RC	Υ	ik 3
						OC	OC	RD	RC	GKI	RD	KC	\mathbf{YS}	OYS	DKD		ΥS	OKS	GKC	RKC	0	В	Block 3
							•	RC	ΓG	ΓG	Pu	GD	GS	Pu			GKC	RKC	RC	Υ	GD	0	k 4
								•	GD	•	KC	YKS	GKL	RD	DKD		YKS	В	OKS	KS	KC	ΥS	Block 4
										•	OKS	PKD	PKD	RC			KS	0	RC	GKC	В	OKS	k 5
											•	ΟYS	ΓG	ΟΥS	ркС		KC	ΥS	YKS	GD	Υ	PKD	Block 5
												•	YKS	RD	OKS		YKS	Υ	PKD	0	YS	KS	k 6
													•	• •	UX		RKC	GKC	GD	RC	В	RD	Block 6
														•		,	•	•	•	•	•	•	
															•		•	•	•	•	•	•	
																	•	•	•	•	•	•	

53	54	55	56	57	Vineyard	58	59	60	61	62	Vineyard
	•	•	•	•	row		•	•	•	•	row
	_										
PKD	RC	ΥKI	GKI	BD		OKI	RKS	KS	YC	GS	-
Pu	GS	LG	SO	Х	Block	KC	GKC	OD	YKS	В	Block
RD	KC	\mathbf{YS}	YKS	OKS	Щ	OKS	PC	BD	RC	BKS	щ
ΓG	KC	GS	YKS	Х		PC	KS	OKI	RKS	BKSBKS	
PKD	RC	SO	\mathbf{YS}	YKL	Block 2	BD	GS	RC	ΥC	OKS	Block 2
RD	GKI	OKS	Pu	BD	В	KC	GKC	YKS	В	OD	В
Х	ΥKI	GS	KC	PKD		В	KC	GS	RKS	RC	
RD	ГG	GKL	Pu	ΧS	Block 3	YKS	KS	BKS	PC	OD	Block 3
OKS	YKS	SO	RC	BD	В	GKC .	BD	OKL BKS	OKS	ΥC	В
YS	×	BD	GKI	Pu		YKS GKC	OKI	OD	RC	GS	
KC	ΓG	OKS	RC	RD	Block 4	B	RKS	KS	YC	PC	Block 4
YKL	SO	GS	YKS	PKD	B	BKS	OKS]	GKC	KC	BD	B
BD	RC	Pu	OKS	RD I		KC]	YKS (B	PC	OD	
ΓC	X	KC		ΥS	Block 5	BKS	YC 3	KS	OKL	GKC	Block 5
GS	GKI	YKS]	YKI PKD	SO	Bl	OKS E	RKS '	BD	GS (RC G	BI
RD 0	YKS (Pu Y	GS	YKI		GS C	PC R	YKS 1	BD	OKT 1	
BD H	YS Y	PKD]	GKL (OS 3	Block 6	RKS (RC 1	YC Y	BKS I	KS (Block 6
K	KC	RC P	OKS (Blc	BR	GKC F	OD 3	· OKS B	KC	Blc
•	×.	<u>.</u>	$\overline{\cdot}$	·		•	0	$\overline{\cdot}$	<u> </u>	<u> </u>	

2007 Grape powdery mildew trials. Department of Plant Pathology, University of California, Davis.

Trial 5		T	ria	ı	5
---------	--	---	-----	---	---

-

Trial 6

	Τ	rial	5				Τ	rial	6		
63	64	65	66	67	Vineyard row	69	70	71	72	73	Vineyard row
•	٠	٠	•	•		•	•	•	٠	•	
KC	RKS	KS	YKS	RD		Ð		xow Solution			
M	В	BC	KD	GKC	k 1	S YR	OKL YKC	CS YS	O RKC	C KC	k 1
Pu	GS	OC	BKS	BS	Block 1	ອ ບ		OKS	j BD	CL RC	Block
PKD	RC	PS	YKL]	YC		OKLGKC GS YRD	YKC PKD	GKC OD	I LG	YKL	
PS I	BKS	OC	YKL	KD					YKI	D YS	٤ ک
GS	GKC 1	RD	KC	KS	2	S BD	O KC	C RC	DT 0	YRD	Block 2
RKS	Pu (PKD	В	BC	Block 2	GS PKD OKS	PKD	RKC	OD	GS	
WR		YKS P	RC	BS		PKL	C YS	BD	OD	RC	ŝ
Ð	GKC YC	BS Y	BKS			GS	YKL	KC	YRD YKC	RC OKS GKC	Block 3
RKS K	YC G	YKL F	W	GS C	ŝ	LG RKC	ΓG	RKC YKC OKL		OKS	
KS RI	YKS Y	KC Y			Block 3	ГG	OKE GKC OKS	YKC	GS	RC	-
			D B) BC	Щ	OD	GKC	RKC	KC		Block 4
PS	RC	Pu	c PKD	RD		BD	OKL	ΥS	YKL	(RD	В
L KD	GS	PS	GKC	BC		KC	GKC	YS	YKI	RKC YKC YRD PKD	
YKL	RC	KC	ΥC	В	Block 4	OKS	TG 0	OKL	YRD	KC Y	Block 5
BS	RKS	KS	M	PKD	Blo	GS C	RC I	BD (OD Y	KD R	Blo
Pu	BKS	RD	YKS	OC					YS C	KS PI	
OC	GS	Pu	KC	PS		C L	C YF	SK	D	D OI	ck 6
YKL	GKC	RC	BS YKS KC	YC	k 5	KL RK	0 Gk	ບ ບ	C O	KL PK	Block 6
RD	KD	M	BS	PKD	Block 5	c of	BI	C R(c YK	s XI	
BC BKS RD	RD PKD BC KD GKC GS	KS	В	SKS 1		GK	I KC	RK	GS YKC YKC OD	I OK	۲ ک
BC	KD	YKS KS	PS	BS I		OD	ΥK	YS (GS	OK OK	Block 7
	SD F	YC 3		KS	9	RC	DTC	YRI		PKI	
OC B	GS	M	KS	KD BKS BS RKS PKD YC	Block 6	ΥS	KC RKC LG YKI KC BD GKC YRD	PKL	OKS YKI BD	YKC GS PKD OKI OKS YKE PKD OKS PKD	8
KC (KS (RC	GKC RKS Pu	YKL K		OKE OD YS RC OD GKC OKERKC LG	KC	GKC LG PKD YRD YS RKC RC GS KC	OKS	YKC	Block 8
<u> </u>	<u> </u>		9			OKI	YRD	GKC	BD	RC	

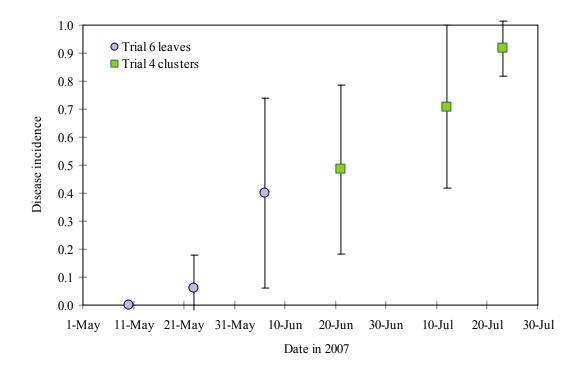
G. Disease evaluation and statistical analysis

Field rating. Powdery mildew colonization on grape clusters was evaluated on 20 July 2007 (Trial 6) and 23 July (Trials 1-5). Our sampling units consisted of at least 10 (usually \geq 15) fruit clusters within the inner portion of each two-vine plot (plot edges were not evaluated because of potential overspray, etc.). The disease level on each cluster was estimated either (a) as the proportion of berries within the cluster hosting living mildew, or (b) as a count of the number of infected berries. Count data were subsequently converted to proportions by dividing the number of infected berries by the mean number of berries determined for three size classes of clusters. (For trials 1-5: "small" clusters = 47, "medium" = 71, and "large" = 145 berries/cluster. For trial 6: small clusters = 36 or 55, medium = 75 or 80, and large = 132 or 130 berries/cluster depending on the identity of the rater.)

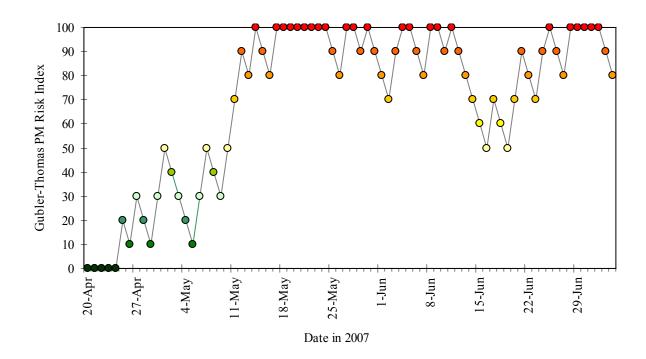
From the cluster data, plot-level estimates of disease incidence and severity were obtained for statistical analysis. Disease *incidence* within a plot was calculated as the proportion of clusters showing at least some living powdery mildew. Disease *severity* was estimated as the mean proportion of mildew infection across all observed clusters in a plot. Since powdery mildew populations at the site represented a mixture of living, senescing, or dead colonies, our field estimates represent an approximation of living disease levels at the time of veraison (grape softening).

Statistics. Homoscedasticity (equality of variance) of incidence and severity data was evaluated by inspecting residual plots. In many cases, inverse sine transformation of incidence data did not greatly improve the distribution of residuals, so raw data was used. In some cases (e.g., Trial 6), square-root transformation of severity data did moderately improve the distribution of residuals, but raw data were analyzed throughout for consistency and ease of standard error calculations.

Treatment means were evaluated statistically with Type III, one-factor ANOVA (Trial 1) or Type III, twofactor ANOVA (for the block designs of Trials 2-6). *A posteriori* comparisons of individual treatments were conducted with Fisher's α , a test which tends towards higher power and fewer Type II errors, but is not conservative with respect to experiment-wise Type I error (Rao 1998).

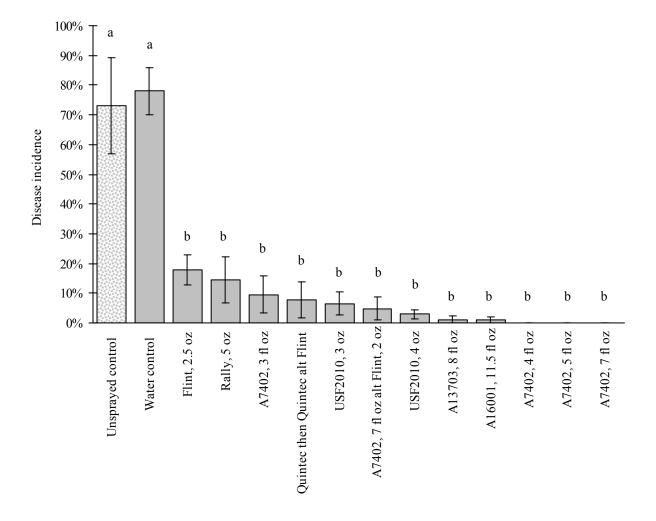

Effect sizes. The magnitude of treatment effects on disease severity relative to untreated vines was also evaluated by calculating effect sizes. We first calculated the effect size index, $\mathbf{h} = \phi_f - \phi_c$, using severity data, where $\phi_f = \text{transformed mean of a given fungicide treatment}$, $\phi_c = \text{transformed mean of unsprayed plots}$, ϕ is calculated as $\phi = 2\sin^{-1}\sqrt{p}$, and p = disease severity (as a proportion) for the treatment (Cohen 1988). Values of \mathbf{h} range from 0 (no effect) to 3.14 (π), the maximum theoretical difference if control plots showed 100% disease severity and powdery mildew was completely absent from fungicide-treated plots. Next, we scaled each calculated effect size to a novel metric (\mathbf{h}_{adj}) that adjusts effect sizes to the amount of disease present in untreated plots ($\mathbf{h}_{adj} = \mathbf{h}/\phi_c$). This latter index allows much better comparison of treatment effect sizes across different trials because disease severity in untreated plots in different experiments may vary due to geographic location, other natural sources, or human error.

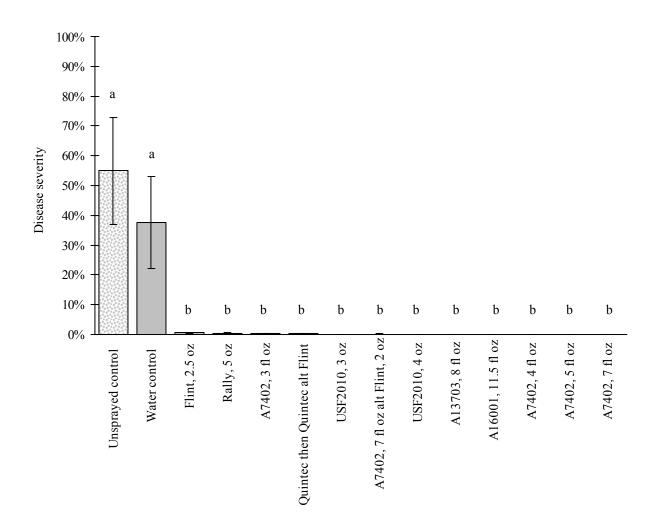
III. Results and discussion

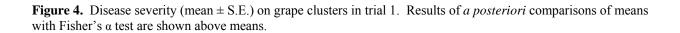

A. Disease progression and powdery mildew risk index

Overall disease pressure at Herzog Ranch was low during much of the 2007 field season, but reached moderate levels by the time of veraison in mid-July. Powdery mildew was not detected in trial 6 on 10 May 2007, but by 23 May was evident in the trial (Figure 1). Cluster-level disease incidence was highly variable in trial 4 and, in late June, was only 50%. Interestingly, the Gubler-Thomas powdery mildew risk index suggested that environmental conditions were conducive to successful disease development beginning about 12 May (Figure 2). Application of JMS Stylet Oil, a mildew eradicant, by the grower in early April may have reduced innoculum levels sufficiently to substantially delay the onset and proliferation of the pathogen.

Figure 1. Progression of disease incidence in leaves (trial 6) or clusters (trial 4) observed in unsprayed plots. Data in means \pm S.D.

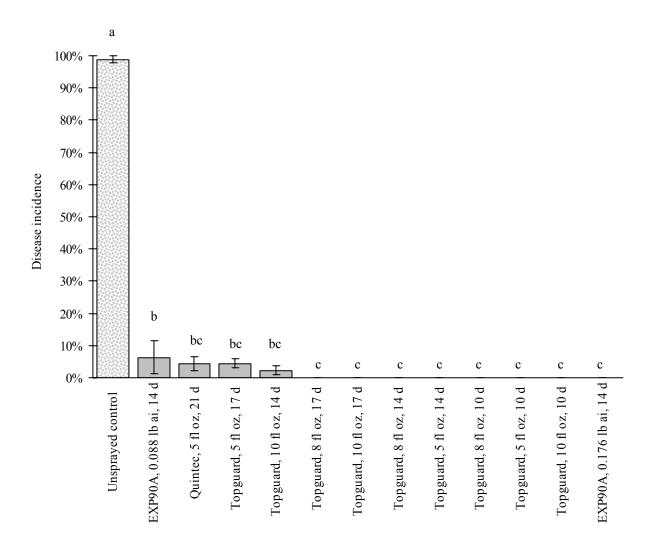

Figure 2. Variation in the Gubler-Thomas powdery mildew risk index over the 2007 growing season. Risk indices ≥ 60 indicate a high potential for disease proliferation. Data from www.wfsweather.net.

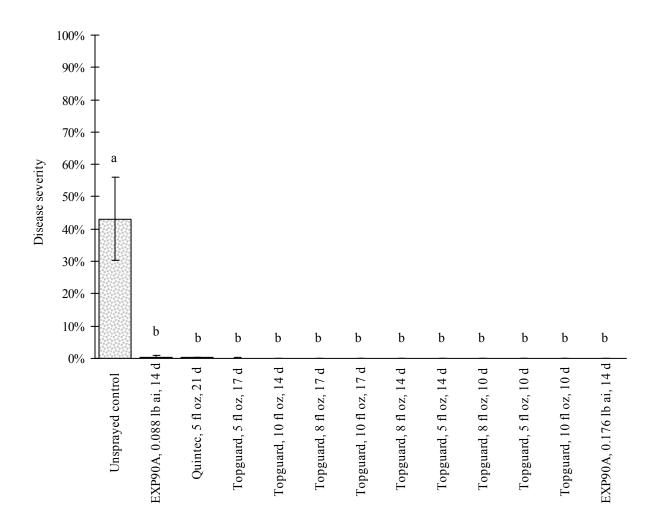



B. Trial 1

Powdery mildew levels in trial 1 control plots reached moderate levels at the time of veraison. All fungicide treatments significantly reduced both disease incidence ($F_{13,68} = 18.4$, p < 0.0001; Figure 3) and disease severity ($F_{13,68} = 7.1$, p < 0.0001; Figure 4) relative to the unsprayed controls and vines sprayed with only water. Although there was no statistical difference among the 12 fungicide treatments, data suggested a trend toward slightly higher levels of disease incidence in plots treated with Flint (2.5 oz/acre) and Rally (5 oz/acre). The experimental products A7402, A16001, and A13703 all showed low disease incidence and severity. USF 2010 applied at 3 and 4 oz/acre (a mixture of the DMI, tebuconazole, and the stobilurin, trifloxystrobin) tended towards better disease management than Flint (triflozystrobin only), but this was not evident statistically (see also effect sizes of these treatments in Tables 4 and 6).

Figure 3. Disease incidence (mean \pm S.E.) in trial 1 treatments. Product names are followed, generally, by application amount (quantity per acre). All treatments in trial 1 were applied on a 21 day spray schedule (the first two applications of both USF2010 treatments were separated by 14 days). Results of *a posteriori* comparisons of means with Fisher's α test are shown above means. Treatments bearing the same letter are not statistically significant. n=6 for all treatments, except n=4 for Flint applied at 2.5 oz/acre.

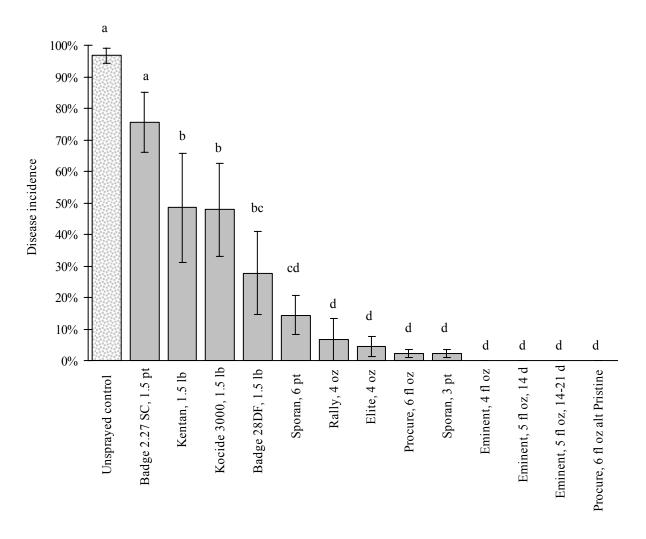


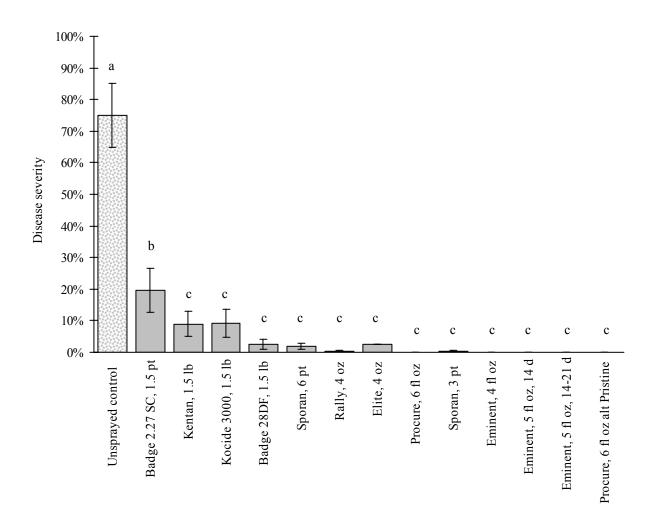


C. Trial 2

Disease incidence within unsprayed plots reached nearly 100%, although severity was relatively low at 43%. Fungicide treatments significantly reduced both disease incidence ($F_{12,60} = 256.4$, p < 0.0001; Figure 5) and severity ($F_{12,60} = 11.2$, p < 0.0001; Figure 6). All Topguard treatments showed very low disease incidence and showed better disease management than EXP90A applied at the lower rate of 0.088 lb ai/acre. All fungicides reduced disease severity approximately equally well (Figure 6). Perhaps due to low disease pressure during this growing season, we were unable to statistically distinguish between Topguard applications made at different spray intervals or tank concentrations. In a series of similar Topguard treatments tested in 2006 at the same site (but under higher disease pressure) data suggested that disease severity increased with both longer intervals and lower concentrations of product (Janousek et al. 2006). Low rates of Topguard (5-8 fl oz/acre) applied every 14-17 days may be acceptable for disease management under low pressure conditions, but higher rates may be necessary in high risk situations.

Figure 5. Disease incidence (mean \pm S.E.) in trial 2 treatments. Product names are followed by application frequency (in days) and application amount (quantity per acre). Results of *a posteriori* comparisons of means with Fisher's α test are shown above means. Treatments bearing the same letter are not statistically significant. All treatment n=6.




Figure 6. Disease severity (mean \pm S.E.) in trial 2 treatments. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means.

D. Trial 3

Untreated vines reached 97% disease incidence in trial 3. Incidence was reduced in most fungicide treatments however ($F_{13,65} = 18.0$, p < 0.0001) and was zero in Procure alternated with Pristine and all three Eminent treatments. Copper treatments showed the highest disease incidence of any fungicide, and the liquid formulation of Badge (copper hydroxide + copper oxychloride) was not statistically better than untreated vines. All products did however, significantly reduce disease severity relative to untreated vines ($F_{13,65} = 32.6$, p < 0.0001). Powdery mildew severity in Badge SC was 20% but did not exceed 10% in all other treatments. All Eminent treatments, Procure alone, Procure alternated with Pristine, Elite, Rally and both Sporan concentrations reduced disease levels to < 2%, suggesting that these products are most likely to satisfy market demand for a clean crop. Many of these same materials performed reasonably well in 2006, a year of high disease pressure (Janousek et al. 2006). However, Sporan applied at 14 days (4.4 pt/acre without adjuvant) had 56% disease severity in 2006 and a Procure treatment similar to that tested this year (6.5 fl oz/acre each 14 days) showed 17% disease severity.

Figure 7. Disease incidence (mean \pm S.E.) in trial 3 treatments. Product names are followed by application amount (quantity per acre). All treatments were applied on a 14 day schedule, except one Eminent treatment applied at 14 or 21 days. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means. Treatments bearing the same letter are not statistically significant.

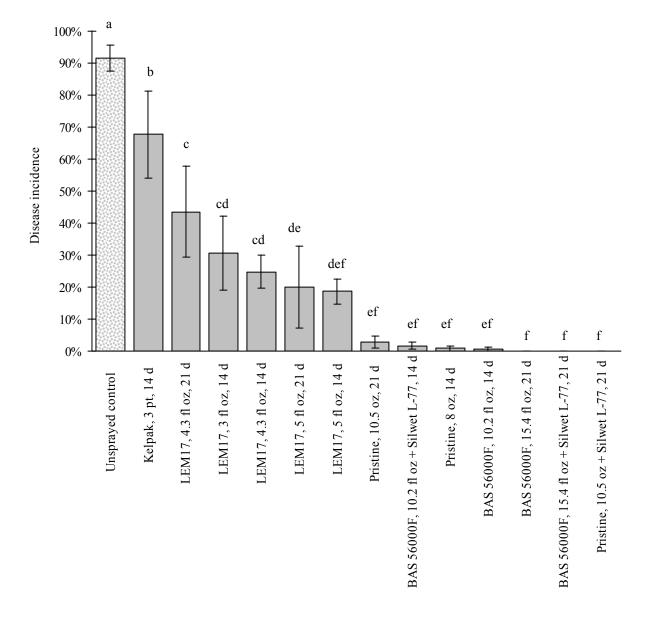


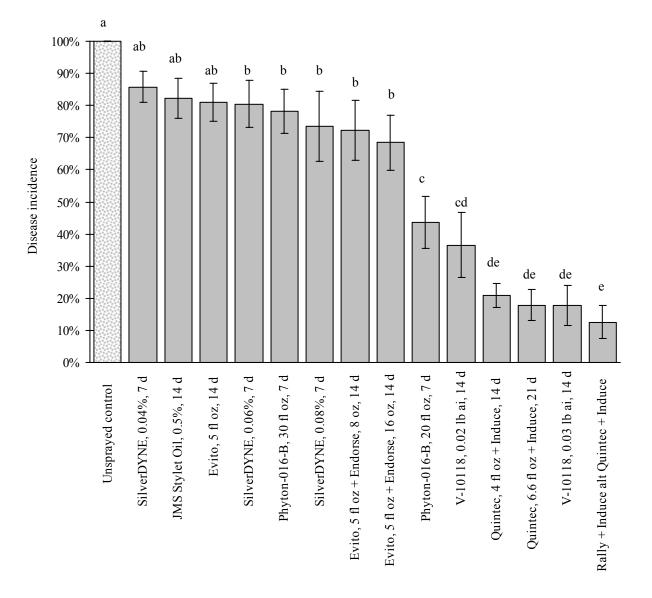
Figure 8. Disease severity (mean \pm S.E.) in trial 3. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means.

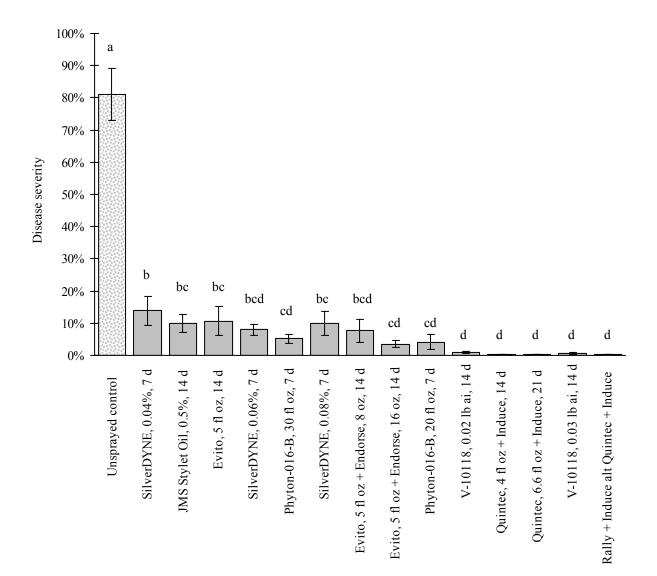
E. Trial 4

In trial 4, unsprayed clusters reached disease incidence levels of 92%. Treatment type significantly affected disease incidence ($F_{13,65} = 17.1$, p < 0.0001). Kelpak was the worst performing product followed by all LEM17 treatments; the 8 best products (all BAS560 00F and Pristine treatments and LEM17 at 5 fl oz each 14 days) formed a single statistical group. Disease severity also differed across the trial ($F_{13,65} = 5.1$, p < 0.0001) with the untreated control (33% severity) and Kelpak (31%) forming a statistical group and all other fungicide treatments (severity of 0-6%) forming a second statistical group. Most treatments reduced disease severity to a level acceptable for commercial harvest (<3%). Our 2007 research generally supports the 2006 finding that BAS560 00F confers good disease control, but LEM17 performance in 2007 was not as good as in 2006 (Janousek et al. 2006).

Figure 9. Disease incidence (mean \pm S.E.) in trial 4 treatments. Product names are followed by application frequency (in days) and application amount (quantity per acre). Silwet L-77 concentrations are 4 fl oz/acre. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means. Treatments bearing the same letter are not statistically significant.

100% 90% 80% 70%Disease severity 60% а а 50% 40% 30% 20% b b 10% b b b т b b b b b b b Τ 0% BAS 56000F, 10.2 fl oz + Silwet L-77, 14 d BAS 56000F, 15.4 fl oz + Silwet L-77, 21 d LEM17, 4.3 fl oz, 21 d LEM17, 5 fl oz, 21 d BAS 56000F, 10.2 fl oz, 14 d Ч Pristine, 10.5 oz + Silwet L-77, 21 d LEM17, 4.3 fl oz, 14 d LEM17, 5 fl oz, 14 d LEM17, 3 fl oz, 14 d Pristine, 10.5 oz, 21 d Pristine, 8 oz, 14 d Kelpak, 3 pt, 14 d BAS 56000F, 15.4 fl oz, 21 Unsprayed control

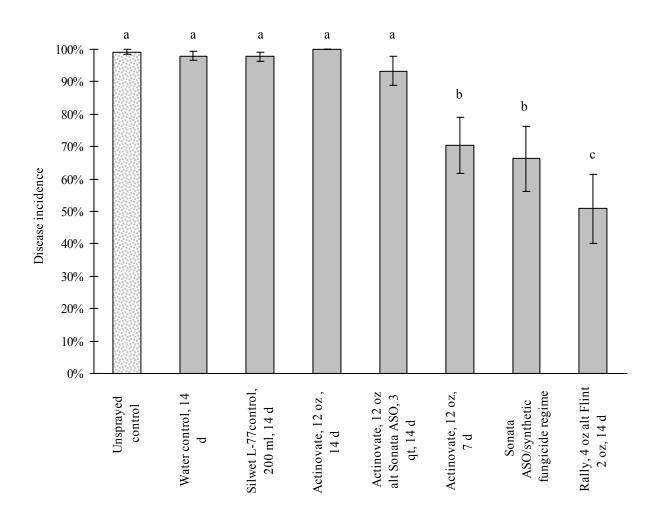

Figure 10. Disease severity (mean \pm S.E.) in trial 4. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means.

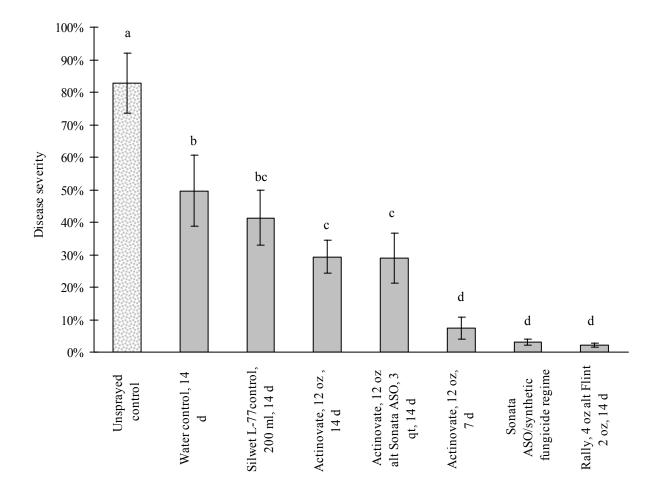

F. Trial 5

Disease incidence was high across much of trial 5, with untreated plots showing 100% incidence (Figure 11). The majority of fungicides reduced disease incidence relative to untreated vines ($F_{14,70} = 19.2$, p < 0.0001). Quintec, Rally alternated with Quintec, the experimental material V-10118 and Phyton-016-B (applied at 20 fl oz/acre) tended towards lowest incidence in the trial. These products were statistically better than JMS Stylet Oil, Evito treatments, SilverDYNE treatments, and Phyton-016-B applied at 30 fl oz/acre. It is unknown why the higher concentration of Phyton-016-B showed higher disease incidence (severity levels were nearly identical; see Figure 12).

Powdery mildew severity was high (81%) in untreated plots but significantly lower in all other treatments ($F_{14,70} = 45.2$, p < 0.0001; Figure 12). V-10118, Quintec, and Rally alternated with Quintec led to the lowest levels of disease severity (all <1%), but several other products - Phyton-016-B, Evito + Endorse and SilverDYNE at 0.06% - grouped with these statistically. The strong anti-mildew performance of the experimental V-10118 is corroborated by other recent work on grape (Janousek et al. 2006; Wilcox and Riegel 2005, 2007).

Figure 11. Disease incidence (mean \pm S.E.) in trial 5 treatments. Product names are generally followed by application frequency (in days) and application amount (quantity per acre). SiverDYNE spray concentrations are in % v/v. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means. Treatments bearing the same letter are not statistically significant. All treatment n=6.


Figure 12. Disease severity (mean \pm S.E.) in trial 5. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means.


G. Trial 6

Powdery mildew incidence was high across all of trial 6 (Figure 13). Untreated plots, plots treated with only water, and vines treated with the adjuvant Silwet L-77 all showed nearly 100% disease incidence. Incidence also exceeded 90% in two biological treatments: Actinovate at 12 oz/acre (14 day interval) and Actinovate alternated with Sonata ASO. We still observed a treatment effect on disease incidence ($F_{7,49} = 12.7$, p < 0.0001).

Powdery mildew severity in untreated vines reached 83% at the time of disease rating, matching levels in trial 5, but it was higher than disease in unsprayed vines from other trials (Figure 14). Application of water, adjuvant alone, biofungicides, and the chemical standard (Rally alternated with Flint) significantly reduced disease severity (overall ANOVA: $F_{7,49} = 28.8$, p < 0.0001). Actinovate applied on a 14 day interval and Actinovate alternated with Sonata ASO resulted in levels of disease severity similar to that of the adjuvant used alone, but Actinovate (at the same concentration) applied weekly reduced disease to 7.3% and performed about as well as Rally alternated with Flint or Sonata ASO used in a program of rotation with Quintec, Flint, and Rally.

Figure 13. Disease incidence (mean \pm S.E.) in trial 6 treatments. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means. Treatments bearing the same letter are not statistically significant. The "Sonata ASO/synthetic fungicide regime" was sprayed at a 14 day interval; please see section C of materials and methods for product concentrations. All treatment n=8.

Figure 14. Disease severity (mean \pm S.E.) in trial 6. Results of *a posteriori* comparisons of means with Fisher's α test are shown above means.

H. Treatment effect sizes

Analysis of fungicide trial data via traditional hypothesis testing is a common means of determining the efficacy of different products, but possesses several shortcomings with regard to the interpretation of data. Perhaps one of the most important limitations is that statistical significance is influenced by sample size (Murphy and Myors 2004), which is often very low in fungicide field trials (Janousek, unpublished data). Because of low replication, the frequency of Type II error can be high, meaning that two fungicide products that likely differ in efficacy (perhaps only to a small or moderate degree) might be (falsely) concluded to be equally effective statistically because of low experimental power. To complement the hypothesis testing approach, we have also determined the magnitude of our treatment effects on disease severity by calculation of effect sizes. We first determined the effect size metric used for proportion data, **h**, as described in Cohen (1988) to quantify the efficacy of various products used across the 6 fungicide trials conducted this year. These calculations were then scaled to the level of disease in the unsprayed treatment to form a novel metric, \mathbf{h}_{adj} . This statistic allows direct comparison of treatments from different trials wherein unsprayed disease levels may differ. Formulas for calculation of **h** and \mathbf{h}_{adj} are given in *Material and Methods, part G*.

For the purpose of comparison, treatments have been grouped according to major classes of compounds, irrespective of trial: (1) water and adjuvant applications, (2) quinolines, (3) carboxyanalides, (4) strobilurins, (5) DMIs, (6) treatments containing a combination of strobilurin and DMI active ingredients, (7) other treatments with active ingredients from 2 chemical classes, (8) coppers, (9) oils, (10) biofungicides, and (11) unclassified products and products with unknown active ingredients.

Water, the adjuvant Silwet L-77, and Kelpak (a fertilizer) had small or negligible effects on disease severity (Tables 1, 12). In contrast, most other fungicides showed high (> 0.80) effect sizes. The best products (e.g., Eminent, A7402, A16001, A13703, Pristine + Silwet L-77) showed effect sizes of 0.98-1.00, suggesting near total inhibition of powdery mildew development on clusters (Tables 5-7). In terms of chemical class, treatments that consisted of (a) DMI compounds, (b) DMI + strobilurin mixtures, or (c), combinations of two different chemical classes, tended showed the highest effect sizes and thus greatest control of disease severity (Tables 5-7). Copper-based products and biofungicides were generally less effective than other fungicides (Tables 8, 10).

Table 1. Effect sizes (\mathbf{h}_{adj}) of water and Silwet L-77 (a non-ionic adjuvant) on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

	Frequency	Concentration			
Product	(days)	(per acre)	Active ingredient	Trial	$\mathbf{h}_{\mathrm{adj}}$
Water	14	N/A	N/A	6	0.32
Water	21	N/A	N/A	1	0.21
Silwet L-77	14	200 ml	trisilicone ethoxylate	6	0.39

Table 2. Effect sizes (\mathbf{h}_{adj}) of quinoline (FRAC group 13) treatments on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

Product	Frequency (days)	Concentration (per acre)	Active ingredient	Trial	h _{adj}
Quintec + Induce ¹	14	4 fl oz	quinoxyfen	5	0.95
Quintec	21	5 fl oz	quinoxyfen	2	0.94
Quintec + Induce ¹	21	6.6 fl oz	quinoxyfen	5	0.95

¹ Induce (an adjuvant) was applied at 0.125% for all (except the first) applications.

Table 3. Effect sizes (\mathbf{h}_{adj}) of treatments containing carboxyanalide compounds (FRAC group 7) on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

	Frequency	Concentration			
Product	(days)	(per acre)	Active ingredient	Trial	$\mathbf{h}_{\mathrm{adj}}$
LEM17	14	3 fl oz	penthiopyrad	4	0.72
LEM17	14	4.3 fl oz	penthiopyrad	4	0.83
LEM17	21	4.3 fl oz	penthiopyrad	4	0.59
LEM17	14	5 fl oz	penthiopyrad	4	0.80
LEM17	21	5 fl oz	penthiopyrad	4	0.74

Table 4. Effect sizes (\mathbf{h}_{adj}) of stobilurin-containing treatments on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

	Frequency	Concentration			
Product	(days)	(per acre)	Active ingredient	Trial	h _{adj}
Evito	14	5 fl oz	fluoxastrobin	5	0.70
Flint 50WG	21	2.5 oz	trifloxystrobin	1	0.91

Table 5. Effect sizes (\mathbf{h}_{adj}) of treatments containing demethylase inhibitors (DMIs) on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

	Frequency	Concentration			
Product	(days)	(per acre)	Active ingredient	Trial	$\mathbf{h}_{\mathrm{adj}}$
Rally	14	4 oz	myclobutanil	3	0.94
Rally	21	5 oz	myclobutanil	1	0.92
Eminent	14	4 fl oz	tetraconazole	3	1.00
Eminent	14	5 fl oz	tetraconazole	3	1.00
Eminent	14 or 21	5 fl oz	tetraconazole	3	1.00
Procure	14	6 fl oz	triflumizole	3	0.99
Elite	14	4 oz	tebuconazole	3	0.97
A7402	21	3 fl oz	difenconazole	1	0.94
A7402	21	4 fl oz	difenconazole	1	1.00
A7402	21	5 fl oz	difenconazole	1	1.00
A7402	21	7 fl oz	difenconazole	1	1.00

Table 6. Effect sizes (\mathbf{h}_{adj}) of treatments containing combinations of DMIs and strobilurins on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

	Frequency	Concentration			
Product	(days)	(per acre)	Active ingredients	Trial	$\mathbf{h}_{\mathrm{adj}}$
USF 2010	21	3 oz	tebuconazole + trifloxystrobin	1	0.96
USF 2010	21	4 oz	tebuconazole + trifloxystrobin	1	0.97
A7402 alt Flint	21	7 fl oz alt 2 oz	difenoconazole alt trifloxystrobin	1	0.95
Rally alt Flint	14	4 oz alt 2 oz	myclobutanil alt trifloxystrobin	6	0.87
A13703	21	8 fl oz	difenoconazole + azoxystrobin	1	0.99

Table 7. Effect sizes (\mathbf{h}_{adj}) of treatments containing other combinations of 2 or more fungicide chemical groups (e.g., strobilurins + carboxyanalides) on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

Product	Frequency (days)	Concentration (per acre)	Active ingredients and chemical class	Trial	h _{adj}
Quintec with Flint ¹	21	6.6 fl oz	quinoxyfen (quinoline) with trifloxystrobin (strobilurin)	1	0.95
Rally alt Quintec ²	14	4 oz alt 4 fl oz	myclobutanil (DMI) alt quinoxyfen (quinoline)	5	0.95
Pristine	14	8 oz	boscalid (carboxyanilide) + pyraclostrobin (strobilurin)	4	0.98
Pristine	21	10.5 oz	boscalid + pyraclostrobin	4	0.95
Pristine + Silwet L-77 ³	21	10.5 oz	boscalid + pyraclostrobin	4	1.00
A16001	21	11.5 fl oz	difenoconazole (DMI) + cyprodinil (anilinopyrimidine)	1	0.98

¹ Flint was applied at 2 oz/acre on the third of 4 total fungicide applications in this treatment.
² Induce, an adjuvant, was applied at 0.125% on all but the first application.
³ Silwett L-77, an adjuvant, was included at 4 fl oz/acre.

Product	Frequency (days)	Concentration (per acre)	Active ingredient(s)	Trial	h _{adj}
Phyton-016-B	14	20 fl oz	copper sulfate ¹	5	0.82
Phyton-016-B	14	30 fl oz	copper sulfate ¹	5	0.80
Badge 2.27 SC	14	1.5 pt	copper hydroxide + copper oxychloride	3	0.56
Badge 28DF	14	1.5 lb	copper hydroxide + copper oxychloride	3	0.85
Kocide 3000	14	1.5 lb	copper hydroxide	3	0.71
Kentan	14	1.5 lb	copper hydroxide	3	0.71

Table 8. Effect sizes (\mathbf{h}_{adj}) of copper-containing products on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

¹ Also contains tannic acid.

Table 9. Effect sizes (\mathbf{h}_{adj}) of oil-based fungicides on powdery mildew severity at Herzog Ranch in 2007. Effect sizes were determined relative to disease levels on unsprayed control vines.

	Frequency	Concentration			
Product	(days)	(per acre)	Active ingredient(s)	Trial	$\mathbf{h}_{\mathrm{adj}}$
Sporan, 14d, 3 pt	14	3 pt	clove, rosemary & thyme oils	3	0.94
Sporan, 14d, 6 pt	14	6 pt	clove, rosemary & thyme oils	3	0.87
JMS Stylet Oil, 0.5%	14	0.5% (v/v)	mineral oil	5	0.71

Table 10. Effect sizes (**h**) of biofungicides on disease severity tested at Herzog Ranch. Effect sizes relative to unsprayed controls and application of adjuvant only are presented. ND = no data; NA = not applicable. All biofungicide treatments include the adjuvant Silwet L-77. Product concentrations are given per acre.

Product	Frequency (days)	Concentration (per acre)	Organism and Active ingredient	Trial	h _{adj}
Actinovate ¹	7	12 oz	Streptomyces lydicus	6	0.76
	,		1 1 1	-	
Actinovate ¹	14	12 oz	Streptomyces lydicus	6	0.50
Actinovate alt	14	12 oz alt 3 qt	Streptomyces lydicus alt	6	0.85
Sonata ASO ¹			Bacillus pumilis		
Synthetic fungicides	14	various	various with	6	0.50
with Sonata ASO ²			Bacillus pumilis		

¹ The adjuvant Silwett L-77 was included in this treatment at 200 ml/acre.

² This treatment consisted of Quintec (8 fl oz/acre) followed by Sonata ASO (3 qt/acre), then Flint (2 oz/acre), then Sonata ASO (3 qt/acre) then Rally (4 oz/acre) and finally Quintec (8 fl oz/acre).

Table 11. Effect sizes (**h**) of non-classified products (and products with unknown active ingredients) on disease severity tested at Herzog Ranch. Effect sizes relative to unsprayed controls and application of adjuvant only are presented.

	Frequency	Concentration			
Product	(days)	(per acre)	Active ingredient	Trial	$\mathbf{h}_{\mathrm{adj}}$
SilverDYNE, 0.04%	7	0.04% (v/v)	silver colloid	5	0.66
SilverDYNE, 0.06%	7	0.06% (v/v)	silver colloid	5	0.74
SilverDYNE, 0.08%	7	0.08% (v/v)	silver colloid	5	0.71
Kelpak	14	3 pt	seaweed-derived fertilizer	4	0.04
BAS560 00F	14	10.2 fl oz	unknown	4	0.98
$BAS560 00F^1$	14	10.2 fl oz	unknown	4	0.97
BAS560 00F	21	15.4 fl oz	unknown	4	1.00
BAS560 $00F^1$	21	15.4 fl oz	unknown	4	1.00
EXP90A	14	0.088 lb ai	unknown	2	0.91
EXP90A	14	0.176 lb ai	unknown	2	1.00
V-10118	14	0.02 lb ai	unknown	5	0.91
V-10118	14	0.03 lb ai	unknown	5	0.93

¹ The adjuvant Silwett L-77 was included in this treatment at 4 fl oz/acre.

IV. References

Cohen, J. 1988. *Statistical Power Analysis for the Behavioral Sciences*. 2nd ed. Lawrence Erlbaum Associates, Hillsdale, NJ, 567 pp.

Janousek, C.N., K.C. Asay and W.D. Gubler. 2006. Control of powdery mildew by fungicides in grapes: results of 2006 trials. Published at <u>http://plantpathology.ucdavis.edu/ext/gubler/fungtrials2006.htm</u>; in 5 sections.

Murphy, K.R. and B. Myors. 2004. *Statistical Power Analysis. A Simple and General Model for Traditional and Modern Hypothesis Tests* 2nd ed., Lawrence Erlbaum Associates, Mahwah, NJ., 160 pp.

Rao, P.V. 1998. Statistical Research Methods in the Life Sciences. Duxbury Press, Pacific Grove, CA, 889 pp.

Wilcox, W.F. and D.G. Riegel. 2005. Evaluation of fungicide programs for control of grapevine powdery mildew. 2004. *F & N Tests* 60:SMF034.

Wilcox, W.F. and D.G. Riegel. 2007. Evaluation of fungicide programs for control of grapevine powdery mildew, 2006. *Plant Disease Management Reports* 1:SMF005.

V. Acknowledgements

We thank Herzog Ranch for permission to conduct these trials on their property and the numerous chemical company donors who funded this research and supplied materials. We thank P. Backup, J. Broome, A. Eskalen, L. Gallegos, T. Pitman, H. Su, B. Tooker, F. Trouillas, and especially R. Herche, who contributed to various aspects of the research.

2007 Grape powdery mildew trials. Department of Plant Pathology, University of California, Davis.

VI. Appendix: fungicide materials

	Chemical products
Product	Active ingredient(s) and concentration(s)
A7402 EC (=Inspire 2.08EC)	difenoconazole (25%)
A13703G	difenoconazole (11.36%) + azoxystrobin (18.18%)
A16001A	difenoconazole (8.4%) + cyprodinil (24%)
Badge 2.27 SC	copper hydroxide (10-12.5%) + copper oxychloride (10-12.5%)
Badge 28DF	copper hydroxide (40-50%) + copper oxychloride (40-50%)
BAS 56000F SC	unknown (300 g/L)
Elite 45DF	tebuconazole (45%)
Eminent 125ME	tetraconazole (125 g/l)
Endorse 11.3DF	polyoxin D zinc salt (11.3%)
Evito 480SC	fluoxastrobin (40.3%)
EXP90A 2.5SC	confidential product (2.5 lb/gal)
Flint 50WG	trifloxystrobin (50%)
Induce	alkyl aryl polyoxyethylene
JMS Stylet Oil	mineral oil
Kelpak (fertilizer derived from Ecklonia	N (all chemical species: 0.309 %) +
maxima [Phaeophyceae; Laminariales])	$P_2O_5 (1.7 \%) + K_2O (potash: 0.6 \%)$
Kentan 40DF	copper hydroxide (40-42%)
Kocide 3000	copper hydroxide (46.1%)
Latron B-1956	non-ionic surfactant (77%)
LEM17 SC	penthiopyrad (20%)
Phyton-016-B	copper sulfate (21.36%) + tannic acid (1.08%)
Pristine 38WDG	boscalid (25.2%)+ pyraclostrobin (12.8%)
Procure 480SC	triflumizole (480g/L)
Quintec 2.08SC	quinoxyfen (22.6 %)
Rally 40WP	myclobutanil (40%)
SilverDYNE	colloidal silver (0.39%)
Silwet L-77	trisilicone ethoxylate (>97%)
Sporan EC	thyme oil (10%) + clove oil (10%) + rosemary oil (18%)
Topguard	flutriafol 1.04SC (12%)
USF 2010 50WG	tebuconazole (25 g/L) + trifloxystrobin (25 g/L)
V-10118 0.41EC	unknown (0.41 lb/gallon)

Rial	logical	products
DiOl	ogicai	producis

Product	Organism
Actinovate Soluble	Streptomyces lydicus WYEC 108 (0.0371 %)
Sonata ASO	Bacillus pumilis

Appendix references: 1. <u>www.agraquest.com</u>. 2. Crop Protection Reference. 2002. C&P Press, New York, NY. 3. National Pesticide Information Retrieval System, Purdue Research Foundation, <u>http://ppis.ceris.purdue.edu/htbin/ppisprod.com</u>. 4. Pscheidt, J.W. and C. M. Ocamb (editors). 2006. 2006 Pacific Northwest Plant Disease Management Handbook. Oregon State University. 607 pp. 5. Quintec[®] Fungicide Label. Dow AgroSciences, <u>www.dowagro.com/usag/prod/084.htm</u>.