

Grapevine Trunk Diseases and Management Strategies

Akif Eskalen¹, Marcelo Bustamante¹, Karina Elfar¹, Karen Alarcon¹, Carlos Carachure¹, Christopher Chen², Mark Battany⁴, Carmen Gispert⁵, George Zhuang⁷, Larry Bettiga⁸

aeskalen@ucdavis.edu

¹Department of Plant Pathology, ²UCCE Sonoma, ³El Dorado, ⁴San Luis Obispo, ⁵Riverside, ⁶Napa, ⁷Fresno, ⁸Monterey

Southern San Joaquin Valley Grape Symposium

Feb 8, 2024

Current project on grapevine

- 1. In vitro fungicide screening via spiral plater
- 2. Field fungicide trials to manage PM and Gray Mold
- 3. Grapevine Trunk Diseases
 - -Dormant pruning wound protection
 - -Biocontrol of GTD
 - -Nursery practices for clean plant material
 - -Aspergillus vine canker
 - -Biocontrol of Pierce's diseases

Grapevine Trunk Diseases

Vascular diseases

- Young Vine Decline
- Esca
- Eutypa Dieback
- Bot Canker
- Phomopsis Dieback

Grapevine Trunk Diseases

- Young Vine Decline
- Esca

Vascular diseases

- Eutypa Dieback
- Bot Canker
- Phomopsis Dieback

Canker diseases

Grapevine Trunk Diseases

- Young Vine Decline
- Esca
- Eutypa Dieback
- Bot Canker
- Phomopsis Dieback
- Black Foot

Vascular and Rot diseases

Canker diseases

Rot diseases

Economical Impact

DISEASE INCIDENCE INCREASES WITH VINEYARD AGE

From Duthie et al. 1991 (Colombard vineyards ranging from 5 to 34 years)

Asexual Fruiting body-Pycnidia

Source of inoculum

Sexual Fruiting body-Perithecia

Spore Release from Perithecia of Botryosphaeria

Spore dispersal pattern of GTD pathogens

Pruning wound susceptibility for Esca Pathogens

Eskalen et al. Plant Disease, 2007, 91:9, 1100-1104.

Macrophomina Charcoal Rot (Macrophomina phaseolina)

Fusarium annulatum

Graft Union

Bustamante et al. 2022 First Report of *Fusarium annulatum* Associated with Young Vine Decline in California. <u>Plant Disease</u>.

Unusual fall symptoms on virus free grapevines

Grenache cv./ Freedom

External Symptoms

Internal symptoms:

Identification of *Aspergillus* spp.

Calmodulin gene (*CaM*) reconstruction

- Brown isolates = Aspergillus Vine Canker samples from • wood
- Blue isolates = Sour rot from fruit
- ۲

A. brasiliensis CBS 101740^T

UCD10591 UCD11276

A. eucalypticola CBS 122712^T

A. vadensis IHEM 26351

A. Iuchuensis CBS 205.80^T [¬]A. luchuensis CBS 564.65[⊤] A. tubingensis CBS 134.48

A. tubingensis IHEM 10349 A. tubingensis Strbr UCD9799

·A. vadensis CBS 113365^T

91/65

90/70

100/100

92/83

Pathogenicity of Aspergillus tubingensis

How do they infect their hosts?

• Pruning wounds

Latent and Endophyte

Infection of GTD on different parts of the vine

Spurs

Field pruning wound protection trials

2) Inoculation 3) Evaluation of infection*N. parvum*(2,000 conidia)

Product name	Active Ingredient	Manufacturer	MPI,	% ^z
Untreated (non-inoculated)	-	-	0.0	f
Esendo, 2.8 lbs	pre-mix of Howler and azoxystrobin	AgBiome Innovations	6.7	ef
Parade, 4.7 fl oz	pyraziflumid	Nichino America	6.7	ef
Luna Sensation, 7.6 oz	fluopyram (17.54%), tebuconazole (17.54%)	Bayer CropScience	8.3	ef
1 L Vitiseal ready-to-use (V- RTU). This is NOT to be diluted.	Acrylic Co-Polymer	VitiSeal International LLC	11.1	ef
UCD 8189 + 8344, 1x10 ⁵ cfu/ml	Aureobasidium pullulans- 8189+8344	N/A	12.2	def
Topsin M 1.25 lbs	Triophanate-methyl	United Phosphorus Inc.	13.3	cdef
Guarda, 2.56 fl oz/ga	thyme oil	BioSafe Systems, LLC	13.3	cdef
Biotam, 2 lbs	Trichoderma asperellum (ICC 012) + Trichoderma gamsii (ICC 080)	Isagro USA	13.3	cdef
Vintec, 2.8 oz	<i>Trichoderma atroviride</i> strain SC1	Bi-PA	24.4	bcdef
Botector, 8 oz	<i>Aureobasidium pullulans</i> strain DSM14940/14941 1	Westbridge Agricultural Products	25.0	bcdef
Crab Life Powder, 0.5 lbs	Chitin	Conchazul de Mexico	26.7	bcdef
PerCarb, 4 lbs	sodium carbonate peroxyhydrate (85%)	BioSafe Systems, LLC	28.9	abcdef
2 X 0.5 L experimental new Vitiseal formulation, ready-to- use (X-RTU). This is NOT to be diluted.	Acrylic Co-Polymer	VitiSeal International LLC	31.1	abcdef
Rhyme, 5 fl oz (applied as pruning wound spray)	Flutriafol (22.7 %)	FMC	33.3	abcdef
TrichosSymBio, 25.6 fl oz	Trichoderma harzianum T78 (of 5 x 10^{11} cfu)	Symborg	33.3	abcdef

Treatments of pruning wound protection trial in 2022

Results of pruning wound protection trial for *Neofusicoccum parvum* in 2022

Figure 2. Evaluation of pruning wound treatments mean percent infection (MPI) rates with *N. parvum* located at UC Davis Plant Pathology Field Station, 2022. Bars = standard errors.

Recovery of biological treatments from inoculated canes

	Recovery %			
	Sacramento County		Kern County	
Treatment	E. lata	N. parvum	E. lata	N. parvum
Bacillus velezensis	0	25	25	5
Bacillus subtilis strain QST 713	0	5	0	0
Bacillus sp.	0	5	10	0
Trichoderma hamatum	0	20	20	15
Trichoderma asperellum and Trichoderma gamsii + a blend of crab and lonbster shell powder	35	10	30	30
Trichoderma asperellum and Trichoderma gamsii	60	45	20	30
Aureobasidum pullulans strain DSM14940/14941	65	100	25	30
Trichoderma atroviride	70	100	45	80
Aureobasidum pullulans	100	100	25	60

https://ucanr.edu/sites/eskalenlab/

Identification of Naturally Occurring Biological Control Agents in California Vineyards

Mode of Action of Biologicals

Trichoderma spp.

Rahul Mahadev Shelake, 2016

Bacillus subtilis

Bohne and Helmut Junge, 2017

Preventative Management in Vineyards

- Protect pruning wounds
- Use disease free, clean plant materials when establish new vineyards
- Apply good cultural practices to minimize stress on young and mature vines
- Delay dormant pruning to avoid potential pathogen dissemination during winter precipitation and to reduce the susceptibility
- If applicable, consider doing double pruning to reduce fungal spore infection during winter moths

Double Pruning

- Pre pruning about 1-foot-long dormant season (December-February)
- Second prune is late pruning before budbreak

Summary

	Commercial name	Active ingredient	Manufacturer
Biocontrol	Biotam (Frac BM2)	(Trichoderma asperellum + T. gamsii	SepRo
	Vintec (Frac BM2)	Trichoderma atroviride SC1	BI-PA
	Botector (Frac BM2)	Aerobasidium pullulans	Westbridge
	GCM	Bacillus velezensis CE100	BSR
Plant extract	Guarda	Thyme oil	Biosafe System
Synthetic fungicides	Topsin-M (FRAC1)	Triophanate-methyl	United Phosphorous
	Luna sensation (FRAC-7)	Fluopyram/Trifloxystrobin	Bayer CropScience
	Esendo (FRAC 11)	Azoxystrobin + Pseudomonas chlororapsis	Agbiome
	Rhyme (FRAC 3)	Flutriafol	FMC
	Parade	Pyraziflumid	Nichino America
Sealant	Vitiseal	Acrylic Co-Polymer	Vitiseal International
Disinfectant	PerCarb	Sodium carbonate peroxyhydrate (85%)	Biosafe Systems

https://ucanr.edu/sites/eskalenlab/

Acknowledgements

Eskalen Lab Team – Department of Plant Pathology UC Davis

Cooperators and UCCE Farm Advisors

Mark Battany – UCCE San Luis Obispo, Santa Barbara Larry Bettiga – UCCE Monterey Monica Cooper – UCCE Napa Carmen Gispert – UCCE Riverside Glenn McGourty – UCCE Mendocino Rhonda Smith – UCCE Sonoma Gabriel Torres – UCCE Tulare Jose Ramon Úrbez-Torres – Agriculture and Agri-Food Canada Lynn Wunderlich – UCCE Central Sierra George Zhuang – UCCE Fresno

Funding:

https://ucanr.edu/sites/eskalenlab/

aeskalen@ucdavis.edu