ET and Deficit Irrigation Approaches in Cotton

Daniel Munk

University of California Cooperative Extension – Fresno

dsmunk@ucdavis.edu
Current Issues

- State water supply- increasing water for environmental, municipal and recreation uses. (*Delta Smelt and Friant-Kern Compromise*)

- “The water molecule is quickly becoming the newest California endangered species”

 Harry Cline

- Demand for food and fiber production continue
Daily / Weekly Cotton ET

Data from DWR Bulletin 113-4
Water Management Options
Scale dependent

- District and regional
- Field and farm scale
Field and Farm Options

1. Seasonal contributions
Field and Farm Options

1. Seasonal contributions
2. Residual soil moisture
Field and Farm Options

1. Seasonal contributions
2. Residual soil moisture
3. Modify cropping system/selection
Field and Farm Options

1. Seasonal contributions
2. Residual soil moisture
3. Modify cropping system/selection
4. Deep well availability
Field and Farm Options

1. Seasonal contributions
2. Residual soil moisture
3. Modify cropping system/selection
4. Deep well availability
5. System type (DU)
Field and Farm Options

1. Seasonal contributions
2. Residual soil moisture
3. Modify cropping system/selection
4. Deep well availability
5. System type (DU)
6. System performance- design & maint. (DU)
Field and Farm Options

1. Seasonal contributions
2. Residual soil moisture
3. Modify cropping system/selection
4. Deep well availability
5. System type (DU)
6. System performance- design & maint. (DU)
7. Crop irrigation scheduling and imposing deficits
Why Consider Deficit Irrigation?

- Depending on commodity, water costs and availability, DI can be an economically sound option
- Keep land in production
- Provide more beneficial use on remaining acreage
What is Deficit Irrigation?

- From a crop production standpoint
- From a physiological perspective
- Cotton ET will increase as applied water increases... to a point
- Cotton production increases with increasing water applied?
Crop Water Response

- How does irrigation influence yield?
- What impact does irrigation have on economics?
Yield response to applied water
What is Deficit Irrigation?

Deficit Irrig. (water stress)

Peak Yield

Destructive (anaerobic)
Regulated Deficit Irrigation
(strategic)

- Uses knowledge of crop phenology and physiology to determine timing of deficits
- Makes use of existing deficit irrigation databases to gauge time \times intensity relationships and estimate economic impacts on production and quality
UCCE Irrigation Management Guidelines

- Minimum water stress during prebloom period
- Modest water stress during effective bloom
- Late flower water use ≤ 0.32 in./day
- Best opportunity to deficit irrigate is post cutout

-15, -18 bars Acala’s Limit (-20)
-16, -20-21 bars Pima’s Limit (-22)
Midday LWP Hanford Sandy Loam

\[y = 0.67x + 7.73 \]

\[R^2 = 0.93 \]
WSREC Irrigation Trials - Acala

\[y = -15.274x + 2337.2 \]

\[R^2 = 0.6509 \]
WSREC Irrigation Trials – Acala

\[y = -0.0035x^2 + 8.7643x - 3489.4 \]
\[R^2 = 0.932 \]

\[y = -0.0024x^2 + 6.7547x - 3280.5 \]
\[R^2 = 0.9504 \]
Water Applied and Cotton Yield (5 years), Furrow Irrigated Cotton WSREC

SJV Pima
Changing System Efficiencies

![Graph showing the yield of SJV Pima cotton as a function of water applied. The graph compares Standard Furrow System and Elevated Water Use Efficiency. The yield increases with water applied but levels off after a certain point.]

- Water Applied (acre inches)
- Yield (pounds of Lint per Acre)
Increasing Plant Water Deficits

Field Geography
- High Water Potential
- Low Water Potential

Plant Effects
- Veg. Growth ↓
- Fruit Retention (fruit & quality losses)

Xylem
- Isolated (texture, salinity)

Nutrients
- Diminishing Nutrient Transport

ET
- VPD
- Transient Reductions
- Stomatal Closure

Ps
- Light & Temp.
- Minor Declines
- Injury of Ps Apparatus
Consider Earliness Effects

Nodes Above Cracked Boll vs. Time
Potential Problems with Deficit Irrigation

Quality: length

95, 96, and 97 WSREC Irrigation Trials

- $y = 0.0016x + 111.74$, $R^2 = 0.0019$
- $y = 0.0075x + 103.14$, $R^2 = 0.5949$
- $y = 0.0077x + 101.61$, $R^2 = 0.5459$

Length

- 95', WS Irr.
- 96', WS Irr.
- 97', WS Irr.
RDI Benefits and Challenges

- Energy and resource efficiencies increased
- Some production uncertainties remain
- Potential for reductions in groundwater contamination
- Long term consideration for future buildup of soil solutes, need for managing salts
Applying a Deficit Approach

- Assess water and commodity costs
- Evaluate weak links; soils, system, soils x system
- Where will water savings go?
- Start conservatively and plan
- Start early season & build stress w/ each irrigation
- Reasonable expectations – expect quality impacts to begin as yield declines beyond 15%
Thank you
dsmunk@ucdavis.edu
cottoninfo.ucdavis.edu
Thank You Meeting Sponsors

- Agri-Valley Irrigation
- Netafim Irrigation
- Watson Ag. Irrigation
- CIT Agricultural Pump Efficiency Program
Question: Preirrigation needs include:

- Residual Moisture
- Rooting depth at first irrigation
- Alternate Furrow
- Reduced run length
Economic Yield Response Curve

Y = ax^2 + bx + c

Rational Use Zone

Lower Limit

Upper Limit

Yield

Applied Water
Why Deficit Irrigate?

- Can have minimal impacts on yield
- Can have predictable impacts on yield
- Not always your best option but can be a useful tool
Improving WUE

- Decreasing variability of water uptake
- Limiting deep percolation
- Decreasing Evaporation
- Increasing reliability of a scheduling system
Diurnal Variation of LWP (-Bars)

Furrow Acala Maxxa7/19

6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 AM 1:00 PM 2:00 PM 3:00 PM

4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00
Time-Stress Response to Soil Water Availability

Leaf Water Potential during a 27 Day Period

Sandy Loam
- $y = 0.67x + 7.73$
- $R^2 = 0.93$

Clay Loam
- $y = 0.396x + 7.6897$
- $R^2 = 0.9041$

- Leaf Water Potential (bars)
- Days After Irrigation

Legend:
- Blue line: Sandy Loam
- Red line: Clay Loam
Transpiration and Water Stress

Graph showing the relationship between daily transpiration and water stress.
Why Consider Deficit Irrigation?

- Production Losses
- Crop quality
- Is deficit irrigation predictable?
- Risk management decisions (cost benefit)
Irrigation Scheduling
Plant Water Status Emphasis

- Leaf water potential - Pressure chamber
- Leaf temperature and canopy spectra – IRT, ground and aerial spectral data including NDVI
Yield and vegetative growth response to applied water
Approximate amount of water needed to bring selected soil textures to field capacity

<table>
<thead>
<tr>
<th>Available soil water remaining (%)</th>
<th>Loamy Sand</th>
<th>Sandy Loam</th>
<th>Silt Loam and Clay Loam</th>
<th>Sandy Clay and Silty Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>0.9 - 0.7</td>
<td>1.4 - 1.1</td>
<td>2.2 - 1.7</td>
<td>2.3 - 1.7</td>
</tr>
<tr>
<td>25-50</td>
<td>0.7 - .05</td>
<td>1.1 - 0.7</td>
<td>1.7 - 1.1</td>
<td>1.7 - 1.2</td>
</tr>
<tr>
<td>50-75</td>
<td>.05 - .02</td>
<td>0.7 - 0.4</td>
<td>1.1 - 0.6</td>
<td>1.2 - 0.6</td>
</tr>
<tr>
<td>75-100</td>
<td>0.2 - 0</td>
<td>0.4 - 0</td>
<td>0.6 - 0</td>
<td>0.6 - 0</td>
</tr>
<tr>
<td>At field capacity</td>
<td>0.9</td>
<td>1.4</td>
<td>2.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Poorly Drained Soils

Optimum Irrig. Schedule

Yield vs. Applied Water
How much?

- Retain ability to monitor changes in pump performance
- Water meters, depth to groundwater, drawdown
Irrigation Scheduling
Soil / Water Balance Emphasis

- Knowledge of crop ET
- \(ET_c = ETo \times Kc \) (DWR’s CIMIS program)
- Knowledge of crop growth including plants underground hydraulic system
- Water holding capacity of the soil
- Allowable depletion of root zone
Overview

- Current issues
- Cotton water requirements
- Plant responses to water applied
- Considerations in deficit irrigation
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>1.0</td>
<td>1.7</td>
<td>3.1</td>
<td>4.5</td>
<td>6.3</td>
<td>7.1</td>
<td>7.6</td>
<td>6.5</td>
<td>4.9</td>
<td>3.3</td>
<td>1.7</td>
<td>0.8</td>
<td>49</td>
</tr>
<tr>
<td>Cotton</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>1.6</td>
<td>5.0</td>
<td>8.8</td>
<td>7.6</td>
<td>4.3</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>Corn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>2.3</td>
<td>7.1</td>
<td>9.4</td>
<td>6.7</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>Wheat</td>
<td>0.5</td>
<td>1.1</td>
<td>3.5</td>
<td>6.2</td>
<td>7.8</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>Barley</td>
<td>0.7</td>
<td>1.6</td>
<td>4.1</td>
<td>5.8</td>
<td>4.6</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>17</td>
</tr>
<tr>
<td>Lettuce</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>8</td>
</tr>
</tbody>
</table>
What is Deficit Irrigation?
Farms: Dealing with Change

- Implement short and long term Planning
- Evaluate all options
Thank You Meeting Sponsors

- Agri-Valley Irrigation
- Netafim Irrigation
- Watson Ag Irrigation
- CIT Agricultural Pump Efficiency Program