Mechanical Harvesting of California Black Ripe Table Olives

Louise Ferguson Uriel Rosa, Jacqueline Burns, Sergio Castro
Kitren Glozer, Neil O’Connell, Bill Krueger, Soh Min, JX Guinard
John Ferguson, Peter Kaleko, Paul Vossen
Jaime Ortiz, Jorge LaDux, Fabricio Fernandez
Peter Searles and Cecelia Rosseaux Searles
and
Dave and Karen Smith of DSE
Rocky Hill Ranch and Burreson Ranch
Bell Carter Olives and Musco Family Olive Company
Finca La Bella and MaqTec
Erick Nielsen, Matt Coe, Don Mayo
47% of Gross Return
Objectives: 1996 - 2009

- Economically feasible mechanical harvesting:
 - for existing orchards
 - future orchards
Major Factors: 1996 - 2009

- **Final goal:**
 - commercially competitive product

- **Develop picking method:**
 - harvester second

- **How must orchards change?**

- Canopy Contact
- DSE Harvester
 - 2006, 7, 8

Commercially Marketable Processed Olives
DSE 006, 007 and 008

- Final Efficiency: 57.8% (44.1 – 77.6%)
- % Cannable: 88*** vs 96
- Adj. value/Ton ($): 1,013*** vs. 1137

- Canopy contact head is viable
 - marketable processed olives
- The harvester is marginal
 - slow and inefficient

- MaqTec Colossus
 - Argentina
 - Portugal
 - 2008

Commercially Marketable Processed Olives
Rabodoa, Portugal: September 2008
MacTeq Research Conclusions: Argentina and Portugal, 2008

- Colossus is very efficient:
 - > 90% efficiency

- Fruit damage is unacceptable
 - but it could be improved
Evaluated Existing Mechanical Harvesters 2007, 2008

- Trunk Shakers
 - ENE
 - COE
 - OMC
- Spanish Wraparound
 - 2007, 2008

Commercially Marketable Processed Olives
<table>
<thead>
<tr>
<th>Training</th>
<th>Harvest Eff. %</th>
<th>% Can.</th>
<th>Adj/ton</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>100%</td>
<td>97.1</td>
<td>1,035</td>
<td>Hand</td>
</tr>
<tr>
<td>Free Esp.</td>
<td>100%</td>
<td>96.3</td>
<td>1,042</td>
<td>Hand</td>
</tr>
<tr>
<td>Woven Esp.</td>
<td>100%</td>
<td>94.4</td>
<td>1,031</td>
<td>Hand</td>
</tr>
<tr>
<td>Tied Esp.</td>
<td>100%</td>
<td>92.8</td>
<td>1,101</td>
<td>Hand</td>
</tr>
<tr>
<td>Training</td>
<td>Harvest Eff. %*</td>
<td>% Can. NSD</td>
<td>Adj/ton NSD</td>
<td>Shaker Hand</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Conventional</td>
<td>67.4</td>
<td>95.0</td>
<td>974</td>
<td>Shaker Hand</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>97.1</td>
<td>1,035</td>
<td></td>
</tr>
<tr>
<td>Free Esp.</td>
<td>63.1</td>
<td>96.4</td>
<td>872</td>
<td>Shaker Hand</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>96.3</td>
<td>1,042</td>
<td></td>
</tr>
<tr>
<td>Woven Esp.</td>
<td>65.3</td>
<td>95.3</td>
<td>963</td>
<td>Shaker Hand</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>94.4</td>
<td>1,031</td>
<td></td>
</tr>
<tr>
<td>Tied Esp.</td>
<td>69.4</td>
<td>96.1</td>
<td>1,131</td>
<td>Shaker Hand</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>92.8</td>
<td>1,101</td>
<td></td>
</tr>
</tbody>
</table>
Trunk Shaker Research
Conclusions: 2008

- Trunk damage is unacceptable
- Harvest efficiency is marginal
- Fruit quality is excellent
Conclusions: 2006 - 2008

- Canopy and Trunk Harvesters
 - fruit damage is not limiting factor
 - harvest efficiency remains low
Major Factors: 1996 - 2009

- Final goal:
 - commercially competitive product

- Develop picking method first:
 - harvester second

- How must orchards change?
Harvester Evaluations: 2009

- Canopy Contact
 - Coe
 - Agright
- Trunk Shakers
 - ENE
- Small Orchard Prototypes
 - AH Rake
 - WHK Wheel Rake
 - CSU Chico Air Pulse Harvester
COE Harvester
AgRight Olivia
ENE Trunk Shaker
AH Rake
WH Krueger Wheelrake
Questions?

Groups.ucanr.edu/olive_harvest
To develop mechanical harvesting for the California table olive industry.

This site presents the following: current research; project proposals and reports; project investigators; industry cooperators, and field days and meetings.

This page has been displayed 2183 times since 03/19/2007
Site was last updated on 12/3/07 at 04:41 PM