Preliminary Chromatographic Studies on the Metabolites and Photodecomposition Products of the Juvenoid 1-(4'-Ethylphenox)-5,7-epoxy-3,7-dimethyl-2-octene

Garret S. Gill, Bruce D. Yarbrough, Isuru Yamamoto and John E. Castell

Division of Entomology, University of California, Berkeley, Calif. 94720

Abstract

Several metabolites and photodecomposition products of the juvenoid, 1-(4'-ethylphenox)-5,7-epoxy-3,7-dimethyl-2-octene, labeled with 14C or 3H in the phenyl group or with 3H in the 1-position of the octene moiety, were tentatively identified by thin-layer chromatographic comparison with 12 authentic, unlabeled compounds from synthesis. On incubation with the rat liver microsome or solubil fraction, the juvenoid is converted to two metabolites, one of which is the diol formed by hydration of the epoxy moiety. Addition of reduced nicotinamide-adenine dinucleotide phosphate to the microsome incubation mixture results in formation of the diol; 1-(4'-ethylphenox)-5,7-epoxy-3,7-dimethyl-2-octene; 1-[4'-1-hydroxyethyl]-phenox-6,7-epoxy-3,7-dimethyl-2-octene; and 1-(4'-acetophenox)-6,7-epoxy-3,7-dimethyl-2-octene; at least 9 other metabolites retaining the ether linkage (detected with both 3H-phenyl and 3H-octene preparations). Rats administered the 3H- or 14C-Juvenoid intraperitoneously excrete almost all of the radioactivity within 54-76 hr, about equally in urine and feces. The 6 or more 3H-phenyl-labeled metabolites in urine are not identified but they are relatively polar compounds. The diol is one of many metabolites excreted in rat and feces. Photodecomposition of the juvenoid as a deposit on silica gel chromatoplates occurs slowly in sunlight unless a photosensitizer (xanthone, anthraquinone) is added in.

Present address: Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya, Tokyo, Japan.
which case it occurs rapidly forming 1-[l-hydroxy-ethyl]-phenoxy]- and 1-[4-acetophenox]-6,7-epoxy-3,7- dimethyl-2-octene and at least 6 other products retaining the ether linkage. The sites in this juvenoid most susceptible to degradation appear to be the epoxy moiety, the benzylic methylene group, and possibly the trans-olefin group.

Introduction

A wide variety of juvenile hormone analogs (juvenoids) have morphogenetic activity on certain insects under laboratory conditions. Juvenoids may be useful as ovicides, mosquito larvicides, in household pest control, and as protectants for livestock, stored grains, and agricultural crops. However, the effectiveness of juvenoids for control of agricultural insect pests under field conditions has been somewhat disappointing. This may be because the juvenoid, once applied to crops, fails to persist for the requisite time to contact most individuals of the population at sensitive stages of development. Since the use of juvenoids in insect control will potentially result in residues on or in food, feed and forage, it is important to understand the mechanisms and pathways for their metabolism and photodecomposition. Information of this type is being developed by several laboratories (1,2).

The juvenoid considered in this report is 1-[4'-ethylphenoxy]-6,7-epoxy-3,7-dimethyl-2-octene (Compound I of Fig. 1; K-20056 of Stauffer Chemical Co.; referred to in this communication as the juvenoid), a relatively simple but yet very potent morphogenetic agent (3). The degradation chemistry studies involved incubation of the juvenoid with rat liver enzymes, administration to rats and locusts to obtain excreted metabolites, and exposure to sunlight.

Materials and Methods

Chemicals. The structures for the chemicals used are given in Fig. 1. Although some of the compounds were cis-trans-mixtures, the trans isomer was predominant in each case.
Three radiolabeled preparations (A, B, and C) of compound I were used.

The 3H-phenyl preparation (A, 67 mCi/mole) was prepared from 3H-labeled 3-ethylphenol, obtained by an exchange reaction under acidic conditions, and the 3H-geranyl preparation (B, 33 mCi/mole) was made from 3H-geranol containing some 3H-nerol obtained by reducing citral with NaBH₄ (4). Stiefel Chemical Co. (Mountain View, Calif.) provided the 14C-labeled preparation (C, 17 mCi/mole).

Several unlabeled derivatives or possible degradation products of compound I were prepared for use in co-chromatographic comparisons with radiolabeled metabolites and photodecomposition products. The corresponding diene (II) (3,4) was converted to the diepoxide derivative (III) by oxidizing it with 3 molar equivalents of m-chloro-peroxybenzoic acid in chloroform solution. Three methods were used to prepare diol IV: reacting the corresponding diene (II) with equimolar osmium tetroxide in the presence of 2 molar pyridine in benzene solution and transesterification of the esterates with maninitol; hydrolysis of the epoxide (I) in 0.5N H₂SO₄ in 40% aqueous tetrahydrofuran at 25°C for 10 min; hydrolysis of the epoxide (I) in 10% aqueous ethylene glycol containing 0.5% K₂SO₄ at 105°C for 1 hr. The tetrac (V) was made from the diepoxide (III) by hydrolysis in 0.5% H₂SO₄ in 40% aqueous tetrahydrofuran at 25°C for 10 min. Reduction of the epoxide (I) with NaBH₄ in ethanol yielded the tertiary alcohol (IV). Filtration of the diol (IV) with lead tetraacetate in benzene converted it quantitatively to the aldehyde (VII) which was oxidized with excess silver nitrate and ammonium hydroxide (Collins' reagent) to form the acid (VIII). The diene resulting from reaction of 1-hydroxyxocetophenone with geranyl bromide was either epoxidized to obtain compound IX (6) or reduced with NaBH₄ and then epoxidized to obtain compound X. Reaction of geranyl bromide with the ethyl ester of 1-hydroxyxocetophenone, hydrolysis of the ester
group and epoxidation gave compound XI. Compound XII was made by reacting potassium 4-ethylphenylate with the methyl ester of threonine-proline and subsequent hydrolysis of the methoxycarbonyl group. The compounds were isolated in pure form by preparative thin-layer chromatography (TLC) on silica gel G chromatoplates (0.25 mm gel thickness, Analtech, Inc., Newark, Del.) or by column chromatography on try-packed Florisil (50/100 mesh, Floridin Co., Berksale, Springs, N. Y.) columns developed with benzene–ether or ether-methanol gradients. In each case, infrared, nuclear magnetic resonance and mass spectra confirmed the identity of the synthesized products.

Analytical methods. Metabolites and photodecomposition products were separated by two-dimensional TLC on silica gel F254 chromatoplates (0.25 mm gel thickness, K. Merck, Darmstadt, Germany) developing with the following sequence of solvent systems: benzene-n-propanol (20:1) (referred to as BP) in the first direction; chloroform-1-dichloroethane-ethyl acetate-n-propanol (10:10:1:1) (CH3Cl) in the second direction; carbon tetrachloride-ether (7:1) (TS) as a second development in the first direction. Radioactive compounds were detected by radioautography (6) and authentic unlabeled compounds were detected with appropriate chromogenic reagents (?) including: molybdenumphosphoric acid and heat yielding blue spots on a yellow background; anisaldehyde, sulfuric acid, acetic acid and heat, yielding spots of various colors with different compounds, i.e. green for T and X, blue for IX, violet for IL, yellow for III, IV and V, brown for VI and VII, and grey for XI; lead tetraacetate in benzene giving white spots on a brown background with much higher sensitivity for the E7-dihydroxy compounds (IV and V) than for the other materials. The labeled metabolites and photodecomposition products derived from A-compound A were subjected to chromatographic comparisons with authentic unlabeled compounds from synthesis for tentative identification of the labeled compounds.

Enzyme studies. Livers of male albino rats were homogenized at 29°C (w/v) in potassium phosphate buffer (0.1M, pH 7.4) and the homogenate was centrifuged at 15,000 g for 20 min. The supernatant was decanted.
off and centrifuged at 105,000 g for 1 hr to separate the microsomal and soluble fractions. The microsomal fraction was resuspended in phosphate buffer while the soluble fraction was further purified before use by passing it through a Sephadex G-25 column.

Each incubation flask contained the following constituents in a 2.0-ml total volume of phosphate buffer: the microsome and/or the soluble fraction (approximately 10 mg total protein), MgCl₂ (24 μmoles), reduced nicotinamide-adenine dinucleotide phosphate (NADPH, 0 or 0.5 μmole), and the substrate (labeled compound A, B or C mixed with some unlabeled material to give a total of 0.1 μmole; added in 20-25 μl ethanol). After incubation at 37°C for 2 hr, the reaction mixtures were frozen and lyophilized, followed by extraction of the residue with methanol. The methanol extract was concentrated under nitrogen and analyzed for radioactive components by TLC.

In vivo studies with rats and locusts. Male albino rats (250 g) were treated intraperitoneally with the labeled juvenoid (A, B or C) at 10-500 mg/kg administered as a solution in corn oil. Urine and feces were collected at 24 hr intervals for up to 96 hr. The level of radioactivity in the urine and feces was determined relative to that in the administered dose. In another study, the rats were treated with ³H-compound A at 1 mg/kg, using ethanol as the administration vehicle, and the urine and feces were collected for 96 hr after treatment. The urine was lyophilized and the residue extracted with methanol. The feces were dried at reduced pressure over phosphorus pentoxide and extracted with methanol. The methanol extracts were analyzed by TLC.

Adult male desert locusts (Schistocerca americana) were injected with the ³H-labeled juvenoid (A, 1 μg in 1 pl ethanol), the feces collected for 48 hr after treatment were subjected to continuous Solvent extraction with hexane, and the metabolites were then extracted from the hexane into acetone for analysis by TLC.

Photodecomposition. The labeled compound (A, B or C) was applied at the origin of a silica gel F₂₅₄ chromatogram.
plate to yield a residual deposit of 0.12 μmole/cm², in the presence of or in the absence of a potential photosensitizing chemical (anthraquinone or anthraquinone, 0.5 μmole/cm²). Following exposure in the dark or to direct sunlight for 8 hr, the chromatogram was developed to separate the products.

Results

Chromatographic separation of some of the possible metabolites and degradation products. The chromatographic positions of the various authentic compounds are shown in Fig. 1. The solvent systems are not appropriate for polar compounds such as V, XII and XII. Also, they fail to separate the aldehyde derivative (VII) from the parent compound (II).

Metabolites formed by rat liver enzymes. The epoxide (I) is converted, in small amount, by the microsomes without NADPH to two metabolites, one of which cochromatographs with the diol (IV) and the other, which is not identified, chromatographs slightly above the diol. The soluble fraction also yields the diol (IV) and another metabolite which may be the same as the unidentified product formed by the microsomes alone. Addition of NADPH to the microsomal system results in the formation of at least 15 metabolites present in greater than 5% yield (Fig. 2). The same two metabolites are detected in the microsome- or soluble enzyme system and the same 15 metabolites are detected in the microsome-NADPH system using any one of the &-phenyl- (A), &-pyranyl- (E), or 13-phényl (C) preparations; no, each metabolite is an ether. The product of higher Rf than the parent compound (I) is not evident in all studies and so it is not known whether it is a metabolite or originates from other sources. The total radioactivity accounted for in the products separated by TLC was 65% of the amount used in the incubation mixture.

The metabolite of the juvenile (I) formed most easily by the microsome system without NADPH and by the soluble fraction was found to cochromatograph with diol IV, as indicated above. When this metabolite derived from the 13C-substrate (C) was isolated, by TLC, it was found to
cochromatograph with the diol (IV) on direct spotting, with the corresponding aldehyde (VII) after oxidation with lead tetraacetate, and with the corresponding acid (VIII) after subsequent oxidation with Tollens' reagent. These derivatives confirm the identity of the diol.

Other metabolites formed in the microsomal-NADPH system cochromatograph with the 1-(4'-1-hydroxyethyl)-phenoxy-
and 1-(4'-acetoxyphenoxy)-6,7-epoxy-3,7-dimethyl-2-octene (X and IX, respectively) and possibly with the tetralol (V).

Metabolites excreted by rats and locusts following injection of the fungus. Table 1 gives the data from

![Diagram showing metabolites and products](image)

Fig. 2. Chromatographic positions for metabolites and photodecomposition products of 1-(4'-acetoxyphenoxy)-6,7-epoxy-3,7-dimethyl-2-octene (darkened circles) and the structures for compounds cochromatographing with individual components. The positions for known compounds not cochromatographing with metabolites and photodecomposition products are shown as open circles (see Fig. 1).
studies in which varying doses of labeled compounds A, B and C were administered intraperitoneally to rats and the level of radioactivity in the urine and feces was determined for up to 96 hr thereafter. The radioactivity of the 14C- and 3H-phenyl labeled compounds (C and A) is largely, if not completely, eliminated from the body within 54-96 hr, but a smaller amount of the radioactivity is accounted for in the excreta of rats treated with the 3H-geranyl labeled preparation (B). The urine contains many metabolites, but none of these chromatograph with Rf values higher than that of the estradiol (V) under the standard conditions. Using repeated development with benzene-propyl acetate (5:1) mixture in the same direction, the polar urinary metabolites are resolved into at least 6 components, none of which is identified. The extracts of rat and locust feces contain many metabolites (Fig. 2) including one cochromatographing with the diol (IV) in each case and others chromatographing above and below this position.

There are preliminary indications of a specific tissue

<table>
<thead>
<tr>
<th>Labeling Position</th>
<th>Excreted Radioactivity, %</th>
<th>Urine</th>
<th>Feces</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C-Phenyl (C) b</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3H-Phenyl (A) c</td>
<td>54</td>
<td>44</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>3H-Geranyl (B) c</td>
<td>40</td>
<td>33</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

bStudies conducted by L. J. Hoffman and L. J. Rehm.
cThe dose was 46 mg/kg and the excreta were collected for 96 hr.

cThe excretion results are averaged for administered doses of 10, 50, 250 and 500 mg/kg. The excreta were collected for 54 hr.

185
localization of the JH from labeled compound A in locusts injected 3 weeks after allatectomy as newly-molted adults. This localization, when it occurs, appears to be specific for the testes and persists for several days; no comparable persisting JH levels appear in other tissues of the males or in any tissues of the females. The chemical basis for and significance of this localization are unknown.

Photodecomposition. The juvenoid does not photodecom- pose appreciably when exposed to sunlight for up to 8 hr (3) on a silica gel chromatoplate in the absence of a photosensitizer, or in the dark in the presence of a photosensitizer, but extensive degradation results when safinone or anthraquinone is added to the juvenoid and it is then exposed to sunlight. At least 8 photo- decomposition products are formed in the presence of safinone (Fig. 2) and two of these chromatograph with the 1-[1H,1-(hydroxethyl)-phenoxyl-] and 1-[1H-aceto- phenoxy]-6,7-epoxy-3,7-dimethyl-2-oxetenes (X and XX, respectively). The remaining photodecomposition products are not identified but they do not include the diepoxide (III) or any of the other authentic compounds available. All of the major photodecomposition products are ethers because they are detected with both the JH-phenyl (A) and JH-geranyl (8) preparations. There are also other photodecomposition products appearing after shorter irradiation periods but these appear to be transient materials leading to the formation of more stable derivatives.

Discussion

The emphasis in the present study was placed on relatively apolar metabolites and photodecomposition products retaining the ether linkage. Thus, relatively polar products such as glucoside, glucoside, sulfate and other conjugated metabolites and polar polymeric photodecomposition products are not considered. The cochromatographic technique employed is not adequate, by itself, for identification of the metabolites and photo- decomposition products. However, it does indicate that the sites on the juvenoid most susceptible to attack, depending on the conditions, include the epoxide moiety,

186
the benzylc methylene group, and possibly the trans-clefin group.

The ether group is not cleaved to an appreciable degree in the enzymatic systems studied; so, there is not extensive oxidation at C-1 of the geranyl-derived moiety. Epoxide cleavage by the liver soluble and microsomal fractions possibly results from the action of a "hydrolase"; similar cleavage by insect enzyme preparations forms the corresponding diol from Cecropia juvenile hormone (2). The enzymatic conversion of the 4'-ethylphenoxynol to the 4'-acetoxyphenoxynol via the corresponding alcohol is anticipated from studies on other 4'-ethylphenoxynol compounds (5). The reactions occurring in living rats and locusts seem to be similar, in part, to those encountered with the microsomes-NADPH system. It is obvious from the number of metabolites that other sites on the molecule are also susceptible to attack or that some intramolecular rearrangements take place during the course of metabolism. However, many of the metabolites could be formed by combinations of attack at the sites already defined.

A specific inhibitor capable of blocking the enzymatic metabolism of this type of juvenoid would be potentially useful in prolonging the duration of juvenoid action in insects. It appears unlikely that a single compound would be adequate to block all of the enzymes involved in juvenoid breakdown by the liver system investigated. However, an inhibitor for the most rapid reaction in a particular enzyme system (or species in vivo) might extend the persistence of the juvenoid and the epoxide cleavage reaction is a candidate for this purpose. The imino analog of the epoxide is of potential interest in this respect (9).

The methylene position of the ethylphenoxynol moiety undergoes sensitized photochemical oxidation and this occurs, in part, without other modification of the molecule. The epoxide is not detected among the photo-decomposition products of compound I (this report) but it is with a related compound (1).

The activities of several of the possible metabolites
and degradation products of juvenoid I in producing 50% pupal-adult intermediates when applied topically to Tenacril mollitor pupae as follows, as μg/pupa: I - 0.007; II and IX - 0.3-0.5; VIII - 10; VII - 50; IV, V, VIII and XII - > 100. The activities found for compounds I, II, and IX are in general agreement with earlier reports (3, 5). Within the limitations of this test, the products are all of reduced biological activity. It is of interest to test these compounds for potency on phytoplankton because compound I at 10 ppm inhibits the growth of Chlamydomonas sp.

The juvenoid investigated (compound I) represents a class of many related compounds with high nematophagetic activity (3, 5). The reactions noted with this compound should therefore be applicable, in part, to other 1- (substituted-phenox)-6,7-epoxy-3,7-dialkyl-2-oxones where the alkyl substituents are methyl or ethyl.

Acknowledgement

Aided by PHS grant ES 00049, ARC Contract No. AT(04-3)-34, project agreement No. 113, and The Rockefeller Foundation. For advice and assistance we thank H. Kamiyama, formerly of this laboratory, W. J. Loker of the Division of Entomology and J. A. West of the Department of Botany, University of California, Berkeley; J. J. Menn and L. J. Hoffman of Stauffer Chemical Co., Mountain View, Calif.; F. M. Fallos of Stauffer Chemical Co., Richmond, Calif.

References

1. B. A. Pawson, F. Schidt, and F. Vane, this volume.

188