Flow Measurement

Larry Schwankl
Irrigation Specialist, UC Cooperative Extension
559-646-6569 schwankl@uckac.edu
http://ucanr.org/schwankl
Measuring Irrigation Water Flow Rates

Blaine Hanson
Irrigation and Drainage Specialist
Department of Land, Air and Water Resources
University of California, Davis

Larry Schwankl
Irrigation Specialist, UC Kearney Agricultural Center
Department of Land, Air and Water Resources
University of California, Davis

University of California Agriculture and Natural Resources
Publication 21844
Funded by the Joseph G. Prosser Trust
Administered by the University of California Water Resources Center
Flow Measurement - Background

- Flow in a pipe:
Flow Measurement - Background

- Flow in a pipe:
- Open channel flow:
Flow Measurement - Background

- Flow in a pipe:
- Open channel flow:
- In almost all cases, it is easier to measure water in a pipe than in an open channel.
Flow Measurement - Background

- Flow in a pipe:
 - Almost all pipeline flow measurement actually measures the flow velocity, then converts that to flow rate using the flow area (e.g. area of pipe).
Flow Measurement - Background

- Flow in a pipe:
 - Almost all pipeline flow measurement actually measures the flow velocity, then converts that to flow rate using the flow area (e.g. area of pipe).

- Open channel flow
 - Flow velocity (along with flow area) is also used with some techniques for determining open channel flow rate.
 - Current meters
 - Most methods are calibrated flow rate.
Flow Measurement - Background

- **Flow in a pipe:**
 - Almost all pipeline flow measurement actually measures the flow velocity, then converts that to flow rate using the flow area (e.g. area of pipe).

- **Open channel flow**
 - Flow velocity (along with flow area) is also used with some techniques for determining open channel flow rate.
 - Current meters
 - Most methods are calibrated flow rate.

- **Turbulence is bad for flow measurement**
 - Prefer lots of straight pipe or straight sections of unchanging channel.
Flow Measurement – Open Channel Flow

- Most commonly see:
 - Weirs:

[Diagram of a sharp-crested weir with labels for Elevation of Weir Crest, 4H, Water Surface, 2H, and Channel Bottom.]

[Diagram of a rectangular-notch weir with end contractions.]
Flow Measurement – Open Channel Flow

- Most commonly see:
 - Weirs: Can be quite accurate but can have a problem with sediment and trash building up behind the weir.
Flow Measurement – Open Channel Flow

- Most commonly see:
 - Weirs:
 - Flumes:
Flow Measurement – Open Channel Flow

- Most commonly see:
 - Weirs:
 - Flumes: Able to pass trash and sediment more easily than does a weir, but flumes are more difficult to construct.
Pipeline Flow Measurement

- Want 6 to 10 pipe diameters of straight pipe upstream and 3 to 5 pipe diameters of straight pipe downstream of meter.
Pipeline Flow Measurement

- Want 6 to 10 pipe diameters of straight pipe upstream and 3 to 5 pipe diameters of straight pipe downstream of meter.
- Try to avoid placing a flow meter just downstream of tees, elbows, and especially devices like valves, some check valves, etc.
 - Partially open valves are the worst.
Pipeline Flow Measurement

- Want 6 to 10 pipe diameters of straight pipe upstream and 3 to 5 pipe diameters of straight pipe downstream of meter.
- Try to avoid placing a flow meter just downstream of tees, elbows, and especially devices like valves, some check valves, etc.
 - Partially open valves are the worst.
- Most pipeline flow meters require the pipe to be flowing full to be accurate.
Pipeline Flow Measurement

- Propeller flow meters
 - Most common. Often used for measuring pump discharge flow rate.
Pipeline Flow Measurement

- Propeller flow meters
 - Most common. Often used for measuring pump discharge flow rate.
 - Accurate, relatively inexpensive, no power reqd.
Pipeline Flow Measurement

- Propeller flow meters
 - Most common. Often used for measuring pump discharge flow rate.
 - Accurate, relatively inexpensive, no power reqd.
 - Can become entangled with weeds, trash, etc.
Pipeline Flow Measurement

- **Propeller flow meters**
 - Most common. Often used for measuring pump discharge flow rate.
 - Accurate, relatively inexpensive, no power reqd.
 - Can become entangled with weeds, trash, etc.
 - Difficult to use on large pipes.
Pipeline Flow Measurement

- **Propeller flow meters**
 - Most common. Often used for measuring pump discharge flow rate.
 - Accurate, relatively inexpensive, no power reqd.
 - Can become entangled with weeds, trash, etc.
 - Difficult to use on large pipes.
 - May be used with “flow straighteners” to reduce straight pipe requirements for accuracy.

The Flow Straightener
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
 - Inexpensive and can be moved from location to location.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
 - Inexpensive and can be moved from location to location.
 - Only measures flow velocity at a single location so can lead to inaccuracies unless installed just right.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
 - Inexpensive and can be moved from location to location.
 - Only measures flow velocity at a single location so can lead to inaccuracies unless installed just right.
 - Can be affected by trash in the water.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
 - Tube Magmeters

Here’s How It Works...
Induced Voltage = BxDxV

- B = Flux Density (magnetic strength)
- D = Diameter of Conductor
- V = Fluid Mean Velocity
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
 - Tube Magmeters
 - Extremely accurate, less sensitive to turbulence, no moving parts, no obstruction in flow path.

![Pipeline flow measurement images](image-url)
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
 - Tube Magmeters
 - Extremely accurate, less sensitive to turbulence, no moving parts, no obstruction in flow path.
 - Limit on pipe size, power is reqd., expensive.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters
 - Accurate, but only measuring at installed location in pipe.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters
 - Accurate, but only measuring at installed location in pipe.
 - Can be used on large pipe. Can be moved from site to site. No moving parts
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters
 - Accurate, but only measuring at installed location in pipe.
 - Can be used on large pipe. Can be moved from site to site. No moving parts.
 - Expensive.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters

Acoustic Meters
- Work by sending an acoustic signal across the pipe.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters

Acoustic Meters

- Doppler Meters
 - Measures the velocity of particles in the water. Sends out a signal of known frequency and measures the frequency of the signals reflected back by the moving particles.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters

Acoustic Meters

- **Doppler Meters**
 - Measures the velocity of particles in the water. Sends out a signal of known frequency and measures the frequency of the signals reflected back by the moving particles.
 - Needs some particles in the water, can handle very dirty water, very portable, works on large pipes.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters

Acoustic Meters

- **Doppler Meters**
 - Measures the velocity of particles in the water. Sends out a signal of known frequency and measures the frequency of the signals reflected back by the moving particles.
 - Needs some particles in the water, can handle very dirty water, very portable, works on large pipes.
 - Doesn’t do well with very clean water, needs power, costly.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters

Acoustic Meters
- Doppler Meters
- Transit Time Meters
 - High frequency signal sent out across the pipe. The signal sent upstream takes longer to return than the signal sent downstream, due to the water velocity.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters

Acoustic Meters
- Doppler Meters
- Transit Time Meters
 - High frequency signal sent out across the pipe. The signal sent upstream takes longer to return than the signal sent downstream, due to the water velocity.
 - Works well on clean or slightly dirty water. Very accurate. Portable. Works well on large pipe.
Pipeline Flow Measurement

- Propeller flow meters
- Insertable turbine meters
- Electromagnetic flow meters
- Insertable Mag meters

Acoustic Meters

- Doppler Meters

Transit Time Meters

- High frequency signal sent out across the pipe. The signal sent upstream takes longer to return than the signal sent downstream, due to the water velocity.
- Works well on clean and slightly dirty water. Very accurate. Portable. Works well on large pipe.
- Needs power. Expensive. Not good if water is too dirty.
Questions???

Larry Schwankl
Irrigation Specialist, UC Cooperative Extension
559-646-6569 schwankl@uckac.edu

Powerpoint available at: http://ucanr.org/schwankl
Flow Meter Use on Dairies

- How do you measure the flow rates?
 - Manure water – you could use pond drop but a flow meter is the only good choice.
 - Freshwater sources.
 - Wells – could use pump test info. but what if well flow rate is changing?
 - Dropping groundwater table, pump wear, etc.
 - Have to keep track of time of operation.
Flow Meter Use on Dairies

- **Flow Meters:**
 - How are they installed?
 - Where should they be installed?
 - Full Pipe Flow !!!!
 - Avoid installing the meter downstream of a partially open valve, elbow, and anything which disrupts the water flow path.
Flow Meter Use on Dairies

- **Flow Meters:**

- **Other flow measurement situations:**
 - Water is in a channel, ditch, etc. = Open Channel Flow
 - Harder to measure, harder to measure accurately.
 - If can find a spot where the water is in a pipeline, measure there.

Estimations using Trajectory Method
Flow Meter Use on Dairies

- Flow Meters:
- Other flow measurement situations:
 - Water is in a channel, ditch, etc. = Open Channel Flow
 - Measuring open channel flow:
 - Flumes – can pass debris, hard to build
 - Weirs – easier to build, traps debris
 - Siphons

![Diagram of siphons and flow measurement](image)

Figure 40. Measuring the head of siphons. The head is the difference between the elevation of the water surface in the ditch and the water surface in the field.

![Graph of rate of flow through siphons](image)

Graph showing rate of flow through small siphons.