Getting the Most From Your Irrigation System

Larry Schwankl
UC Cooperative Extension
(559) 646-6569
ljschwankl@ucanr.edu
Powerpoint at: http://ucanr.edu/schwankl
Flood Irrigation Systems:

- Not a lot can be done to improve them, but here are two ideas:
Flood Irrigation Systems:

- Not a lot can be done to improve them, but here are two ideas:
 - Monitor the soil moisture (and ideally the trees) to see if you can go longer between irrigations.
Flood Irrigation Systems:

- Not a lot can be done to improve them, but here are two ideas:
 - Monitor the soil moisture (and ideally the trees) to see if you can go longer between irrigations.
 - Don’t flood the entire middles. Use furrows pulled along the tree rows.
Sprinkler Irrigation Systems:

- How can we improve their performance?
Sprinkler Irrigation Systems:

- How can we improve their performance?
 - Know the application rate.
 - We provide water use information in units of “inches of water use per day (or per week……..)”.
 - Need to know the system application rate (in/hr) in order to know how long to run the system.
Sprinkler Irrigation Systems:

- How can we improve their performance?
 - Know the application rate.

\[
\text{Application Rate (in/hr)} = \frac{96.3 \times \text{(nozzle discharge in gpm)}}{\text{Spacing along lateral (ft)} \times \text{Spacing between laterals (ft)}}
\]
Sprinkler Application Rate:

Table 2. Sprinkler discharge rates (gpm) for various nozzle sizes (in) and pressures (psi)

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>3/32</th>
<th>7/64</th>
<th>1/8</th>
<th>5/64</th>
<th>3/32</th>
<th>11/64</th>
<th>3/8</th>
<th>13/64</th>
<th>7/32</th>
<th>13/64</th>
<th>1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.17</td>
<td>1.60</td>
<td>2.09</td>
<td>2.65</td>
<td>3.26</td>
<td>3.92</td>
<td>4.69</td>
<td>5.51</td>
<td>6.37</td>
<td>7.32</td>
<td>8.34</td>
</tr>
<tr>
<td>25</td>
<td>1.31</td>
<td>1.78</td>
<td>2.34</td>
<td>2.96</td>
<td>3.64</td>
<td>4.38</td>
<td>5.25</td>
<td>6.16</td>
<td>7.13</td>
<td>8.19</td>
<td>9.32</td>
</tr>
<tr>
<td>30</td>
<td>1.44</td>
<td>1.95</td>
<td>2.56</td>
<td>3.26</td>
<td>4.01</td>
<td>4.83</td>
<td>5.75</td>
<td>6.80</td>
<td>7.86</td>
<td>8.97</td>
<td>10.21</td>
</tr>
<tr>
<td>35</td>
<td>1.55</td>
<td>2.11</td>
<td>2.77</td>
<td>3.50</td>
<td>4.31</td>
<td>5.18</td>
<td>6.21</td>
<td>7.30</td>
<td>8.43</td>
<td>9.69</td>
<td>11.03</td>
</tr>
<tr>
<td>40</td>
<td>1.66</td>
<td>2.26</td>
<td>2.96</td>
<td>3.74</td>
<td>4.61</td>
<td>5.54</td>
<td>6.64</td>
<td>7.80</td>
<td>9.02</td>
<td>10.35</td>
<td>11.79</td>
</tr>
<tr>
<td>45</td>
<td>1.76</td>
<td>2.39</td>
<td>3.13</td>
<td>3.99</td>
<td>4.91</td>
<td>5.91</td>
<td>7.03</td>
<td>8.30</td>
<td>9.60</td>
<td>10.99</td>
<td>12.50</td>
</tr>
<tr>
<td>50</td>
<td>1.85</td>
<td>2.52</td>
<td>3.30</td>
<td>4.18</td>
<td>5.15</td>
<td>6.19</td>
<td>7.41</td>
<td>8.71</td>
<td>10.10</td>
<td>11.58</td>
<td>13.18</td>
</tr>
<tr>
<td>55</td>
<td>1.94</td>
<td>2.64</td>
<td>3.46</td>
<td>4.37</td>
<td>5.39</td>
<td>6.48</td>
<td>7.77</td>
<td>9.12</td>
<td>10.50</td>
<td>12.15</td>
<td>13.82</td>
</tr>
<tr>
<td>60</td>
<td>2.03</td>
<td>2.76</td>
<td>3.62</td>
<td>4.50</td>
<td>5.65</td>
<td>6.80</td>
<td>8.12</td>
<td>9.56</td>
<td>11.05</td>
<td>12.68</td>
<td>14.44</td>
</tr>
<tr>
<td>65</td>
<td>2.11</td>
<td>2.88</td>
<td>3.77</td>
<td>4.76</td>
<td>5.87</td>
<td>7.06</td>
<td>8.45</td>
<td>9.92</td>
<td>11.45</td>
<td>13.21</td>
<td>15.03</td>
</tr>
<tr>
<td>70</td>
<td>2.19</td>
<td>2.99</td>
<td>3.91</td>
<td>4.96</td>
<td>6.10</td>
<td>7.34</td>
<td>8.78</td>
<td>10.32</td>
<td>11.95</td>
<td>13.70</td>
<td>15.59</td>
</tr>
<tr>
<td>75</td>
<td>2.27</td>
<td>3.09</td>
<td>4.05</td>
<td>5.12</td>
<td>6.30</td>
<td>7.58</td>
<td>9.08</td>
<td>10.66</td>
<td>12.32</td>
<td>14.19</td>
<td>16.14</td>
</tr>
</tbody>
</table>

Note: Metric conversions: 1 gal = 3.785 l; 1 in = 2.54 cm; 1 psi = 6.89 kPa
Sprinkler Nozzle Size:
Sprinkler Application Rate

Pitot Tube & Pressure Gauge
Sprinkler Application Rate:

Table 2. Sprinkler discharge rates (gpm) for various nozzle sizes (in) and pressures (psi)

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>(\frac{3}{32})</th>
<th>(\frac{1}{4})</th>
<th>(\frac{3}{64})</th>
<th>(\frac{1}{8})</th>
<th>(\frac{7}{64})</th>
<th>(\frac{1}{4})</th>
<th>(\frac{9}{64})</th>
<th>(\frac{7}{32})</th>
<th>(\frac{15}{64})</th>
<th>(\frac{1}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.17</td>
<td>1.60</td>
<td>2.09</td>
<td>2.65</td>
<td>3.26</td>
<td>3.92</td>
<td>4.69</td>
<td>5.51</td>
<td>6.37</td>
<td>7.32</td>
</tr>
<tr>
<td>25</td>
<td>1.31</td>
<td>1.78</td>
<td>2.34</td>
<td>2.96</td>
<td>3.64</td>
<td>4.38</td>
<td>5.25</td>
<td>6.16</td>
<td>7.13</td>
<td>8.19</td>
</tr>
<tr>
<td>30</td>
<td>1.44</td>
<td>1.95</td>
<td>2.56</td>
<td>3.26</td>
<td>4.01</td>
<td>4.83</td>
<td>5.75</td>
<td>6.80</td>
<td>7.86</td>
<td>8.97</td>
</tr>
<tr>
<td>35</td>
<td>1.55</td>
<td>2.11</td>
<td>2.77</td>
<td>3.50</td>
<td>4.31</td>
<td>5.18</td>
<td>6.21</td>
<td>7.30</td>
<td>8.43</td>
<td>9.69</td>
</tr>
<tr>
<td>40</td>
<td>1.66</td>
<td>2.26</td>
<td>2.96</td>
<td>3.74</td>
<td>4.61</td>
<td>5.54</td>
<td>6.64</td>
<td>7.80</td>
<td>9.02</td>
<td>10.35</td>
</tr>
<tr>
<td>45</td>
<td>1.76</td>
<td>2.39</td>
<td>3.13</td>
<td>3.99</td>
<td>4.91</td>
<td>5.91</td>
<td>7.03</td>
<td>8.30</td>
<td>9.60</td>
<td>10.99</td>
</tr>
<tr>
<td>50</td>
<td>1.85</td>
<td>2.52</td>
<td>3.30</td>
<td>4.18</td>
<td>5.15</td>
<td>6.19</td>
<td>7.41</td>
<td>8.71</td>
<td>10.10</td>
<td>11.58</td>
</tr>
<tr>
<td>55</td>
<td>1.94</td>
<td>2.64</td>
<td>3.46</td>
<td>4.37</td>
<td>5.39</td>
<td>6.48</td>
<td>7.77</td>
<td>9.12</td>
<td>10.50</td>
<td>12.15</td>
</tr>
<tr>
<td>60</td>
<td>2.03</td>
<td>2.76</td>
<td>3.62</td>
<td>4.50</td>
<td>5.65</td>
<td>6.80</td>
<td>8.12</td>
<td>9.56</td>
<td>11.05</td>
<td>12.68</td>
</tr>
<tr>
<td>65</td>
<td>2.11</td>
<td>2.88</td>
<td>3.77</td>
<td>4.76</td>
<td>5.87</td>
<td>7.06</td>
<td>8.45</td>
<td>9.92</td>
<td>11.45</td>
<td>13.21</td>
</tr>
<tr>
<td>70</td>
<td>2.19</td>
<td>2.99</td>
<td>3.91</td>
<td>4.96</td>
<td>6.10</td>
<td>7.34</td>
<td>8.78</td>
<td>10.32</td>
<td>11.95</td>
<td>13.70</td>
</tr>
<tr>
<td>75</td>
<td>2.27</td>
<td>3.09</td>
<td>4.05</td>
<td>5.12</td>
<td>6.30</td>
<td>7.58</td>
<td>9.08</td>
<td>10.66</td>
<td>12.32</td>
<td>14.19</td>
</tr>
</tbody>
</table>

Note: Metric conversions: 1 gal = 3.785 l; 1 in = 2.54 cm; 1 psi = 6.89 kPa.

Application Rate \(\left(\text{in/hr}\right)\) = \[
\frac{96.3 \times \text{(nozzle discharge in gpm)}}{\text{Spacing along lateral (ft)} \times \text{Spacing between laterals (ft)}}
\]
Sprinkler Application Rate:

R10 Plate/Nozzle Options and Flow Performance in GPM and LPH

<table>
<thead>
<tr>
<th>Plate Series</th>
<th>Plate Options</th>
<th>Recommended Nozzles</th>
<th>PSI</th>
<th>BAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>P2 9° Red</td>
<td>Lt. Blue #40</td>
<td>.28</td>
<td>61.4</td>
</tr>
<tr>
<td></td>
<td>Radius 18-20'</td>
<td>Lt. Purple #45</td>
<td>.29</td>
<td>66.4</td>
</tr>
<tr>
<td></td>
<td>(5.5-6.1 m)</td>
<td>Dk. Green #50</td>
<td>.36</td>
<td>82.3</td>
</tr>
<tr>
<td></td>
<td>Stream Ht: 14-23” (36-58 cm)</td>
<td>.35 10FC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>P4 9° White</td>
<td>Dk. Green #50</td>
<td>.43</td>
<td>93.4</td>
</tr>
<tr>
<td></td>
<td>Radius 18-22'</td>
<td>Lt. Yellow #55</td>
<td>.44</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>(5.5-6.7 m)</td>
<td>Lt. Red #60</td>
<td>.51</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Stream Ht: 14-24” (36-61 cm)</td>
<td>.50 10FC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P4 15° Orange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radius: 23-25'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.0-7.6 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream Ht: 40-50” (102-127 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Within the recommended pressure range of 25-50 PSI (1.75-3.25 BAR), the .35 10 FC flow control nozzle is flow regulating within a flow range of no more than 0% greater and 10% less than the nominal flow of .35 GPM (79.5 LPH).

Within the recommended pressure range of pressure range of 25-50 PSI (1.75-3.25 BAR), the .50 10 FC flow control nozzle is flow regulating within a flow range of no more than 0% greater and 10% less than the nominal flow of .5 GPM (114 LPH).

\[
\text{Application Rate } \left(\frac{\text{in}}{\text{hr}} \right) = \frac{96.3 \times (\text{nozzle discharge in gpm})}{\text{Spacing along lateral (ft)} \times \text{Spacing between laterals (ft)}}
\]
Sprinkler Application Rate

Application Rate \(\left(\frac{\text{in}}{\text{hr}} \right) = \frac{96.3 \times \text{(nozzle discharge in gpm)}}{\text{Spacing along lateral (ft)} \times \text{Spacing between laterals (ft)}} \)
Sprinkler Irrigation Systems:

- How can we improve their performance?
 - Know the application rate.
 - Determine and improve (if needed) the application uniformity.
Sprinkler Irrigation Systems:

- Measuring sprinkler application uniformity
 - Tells you how evenly the water is applied.
Sprinkler Irrigation Systems:

- Measuring sprinkler application uniformity

Hire Someone to Do It For You.
Sprinkler Irrigation Systems:

REDUCING RUNOFF FROM IRRIGATED LANDS

Soil Intake Rates and Application Rates in Sprinkler-Irrigated Orchards

LAWRENCE J. SCHWANKL, UC Cooperative Extension Irrigation Specialist; TERRY L. PRICHARD, UC Cooperative Extension Water Management Specialist; BLAINE R. HANSON, UC Cooperative Extension Irrigation and Drainage Specialist

INTRODUCTION

The California State Water Code requires anyone discharging waste that could affect the waters of the state to obtain a permit or coverage under a waiver. Agricultural runoff, whether from irrigation or rainfall, that leaves a property has been determined to likely contain waste (sediment, nutrients, chemicals, etc.).
Microirrigation Systems

- How can we improve them?
Microirrigation Systems

• How can we improve them?
 • Know the application rate and application uniformity.

Orchard Irrigation
Determining the Application Rate & Uniformity of a Microirrigation System

Larry Schwankl
UC Cooperative Extension
559-646-6569 e-mail: ljschwankl@ucanr.edu

Determining the application rate of microirrigation systems can be confusing because irrigation scheduling and tree water use information is usually presented in inches per day (in/day), while discharge from microirrigation emitters is measured in gallons per hour (gph). The following may be helpful in determining required operating times for microirrigation systems.

Available at http://ucanr.edu/schwankl along with the Powerpoint presentation
Microirrigation Systems

- Irrigation uniformity can be a problem with microirrigation systems too.

 That means all the drippers or microsprinklers aren’t discharging the same amount of water.
Microirrigation Systems

- Irrigation uniformity can be a problem with microirrigation systems too.
- Why wouldn’t it be uniform?
 - Not a good irrigation system design – pressure differences too great.
Microirrigation Systems

- Irrigation uniformity can be a problem with microirrigation systems too.
- Why wouldn’t it be uniform?
 - Not a good irrigation system design – pressure differences too great.
Microirrigation Systems

• Irrigation uniformity can be a problem with microirrigation systems too.

• Why wouldn’t it be uniform?
 • Not a good irrigation system design – pressure differences too great. PC drippers or PC micros can help.
Microirrigation Systems

- Irrigation uniformity can be a problem with microirrigation systems too.

- Why wouldn’t it be uniform?
 - Not a good irrigation system design – pressure differences too great.
 - Maintenance problems.
 - Clogging problems can lead to serious non-uniformity problems. Almost all clogging problems can be solved or prevented.
Clogging of Microirrigation Systems

Source: Physical Clogging
Clogging of Microirrigation Systems

Source: Physical Clogging - Particulates

Solution: Filtration
Filters:

- Screen, disk, and sand media filters are all available.

- They can all filter to the same degree BUT they req. different frequency of cleaning
Clogging of Microirrigation Systems

Source: Chemical Precipitates

- Lime (calcium carbonate) and iron are the most common problems.
Chemical Precipitate Clogging of Microirrigation Systems

Water quality levels of concern:

- Calcium: pH > 7.5 and 2.0 meq/l (120 ppm) of bicarbonate
- Iron: pH > 4.0 and 0.5 ppm iron
Clogging of Microirrigation Systems

Source: Lime

Solution: pH Control (Acidification) + filtration
Dealing with Iron Precipitation:

1. Precipitate iron in a pond / reservoir
Dealing with Iron Precipitation:

1. Precipitate iron in a pond / reservoir

2. Chemicals (e.g. phosphonic acid, phosphonate) may keep iron in solution
Clogging of Microirrigation Systems

Source: Biological Sources
Clogging of Microirrigation Systems

Source: Biological Sources

Solution: Filtration (usually media filters) + Biocide
Biological Clogging

Acid may deter but not eliminate biocide chlorine copper
Chlorine

Sources:
- Liquid - sodium hypochlorite.
- Solid - calcium hypochlorite.
- Gas chlorine.
Chlorine as a Biocide

Free Chlorine

- Prevent growth: 1-2 ppm
- Periodic treatment: 10-20 ppm
- Serious clogging cleanup

Test for chlorine using a pool / spa test kit
Chlorine: Injection Rates

- Sodium hypochlorite (liquid)
 - Example: household bleach w/ 5.25% active chlorine.

\[
\text{Chlorine injection} = \text{System flow} \times \text{Desired Cl} \times 0.006 \div \text{Strength of} \\
\text{rate (gal/hr)} \quad \text{rate (gpm)} \quad \text{Conc. (ppm)} \quad \text{Cl soln (%)}
\]

- Calcium hypochlorite (solid)
 - 65-70% available chlorine.
 - 12.8 lbs. of calcium hypochlorite added to 100 gallons of water forms a 1% solution.
 - Use above formula.
Flushing of Microirrigation Systems:

- Silts and clay particles pass through even the best filters.
Flushing

- Silts and clay particles pass through even the best filters.
Flushing

- Silts and clay particles pass through even the best filters.

- Need to flush the system - mainlines, submains, and laterals (in that order). Flush by hand or can use self-flushing end caps.
Maintenance of Microirrigation Systems

Predicting Clogging Problems

"What should I watch for?"

Solutions to Existing Clogging Problems

"I Have a Clogging Problem and I Want to Solve It"

System evaluation for emission device clogging

"How do I determine if I have a clogging problem?"

Routine Maintenance Tasks

"What should I do to keep my microirrigation system running well?"

Microirrigation systems include microsprinklers for tree crops, drip emitters for trees, vines, and some row crops, and drip tape for row and field crops. Microirrigation systems apply water to the soil through emitters that are installed along drip lines and contain very small flow passages. Microirrigation systems can apply water and fertilizers more uniformly than other irrigation methods. This uniformity results in potentially higher yields, higher revenue, and reduced irrigation operating costs.

Uniformity, a performance characteristic of irrigation systems, is a measure of the evenness of the applied water throughout the irrigation system. Distribution uniformity (DU), sometimes called emission uniformity (EU), is an index that describes how evenly or uniformly water is applied throughout the field. A uniformity of 100% means the same amount of water was applied everywhere. Unfortunately, all irrigation systems apply water at a uniformity of less than 100%, and thus some parts of a field receive more water than others. Field evaluations have shown that microirrigation systems have the potential for higher uniformity than other irrigation methods. However, clogging reduces the uniformity of applied water in microirrigation systems, thus increasing the relative differences in applied water throughout a field.

The small flow passages in the emitters and microsprinklers make microirrigation systems highly susceptible to clogging. Clogging reduces the uniformity of the applied water and decreases the amount of applied water. Clogging also decreases the amount of salt leaching around the lateral line in saline soils.
Maintaining Microirrigation Systems

Available at: http://anrcatalog.ucdavis.edu
Stay on Top of Your Maintenance
Questions???

Larry Schwankl
559-646-6569 ljschwankl@ucanr.edu

Presentation available at: http://ucanr.edu/schwankl

Maintenance website: http://micromaintain.ucanr.edu