Sprinkler Application Rate & Maintenance of Microirrigation

Larry Schwankl
UC Cooperative Extension

schwankl@uckac.edu 559-646-6569
Sprinkler Application Rate

Soil Intake Rates and Application Rates in Sprinkler-Irrigated Orchards

LAWRENCE J. SCHWANKL, UC Cooperative Extension Irrigation Specialist; TERRY L. PRICHARD, UC Cooperative Extension Water Management Specialist; BLAINE R. HANSON, UC Cooperative Extension Irrigation and Drainage Specialist
Sprinkler application rate:

$$i \text{ (in/hr)} = \frac{96.3 \times (\text{nozzle discharge - gpm})}{\text{Spacing along lateral (ft.)} \times \text{Spacing between laterals (ft.)}}$$
Sprinkler Application Rate:

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.17</td>
<td>1.48</td>
<td>2.08</td>
<td>2.65</td>
<td>3.26</td>
<td>3.82</td>
<td>4.60</td>
<td>5.51</td>
<td>6.37</td>
<td>7.32</td>
</tr>
<tr>
<td>25</td>
<td>1.30</td>
<td>1.71</td>
<td>2.34</td>
<td>3.06</td>
<td>3.64</td>
<td>4.28</td>
<td>5.25</td>
<td>6.14</td>
<td>7.13</td>
<td>8.19</td>
</tr>
<tr>
<td>30</td>
<td>1.44</td>
<td>1.95</td>
<td>2.56</td>
<td>3.26</td>
<td>4.01</td>
<td>4.83</td>
<td>5.75</td>
<td>6.60</td>
<td>7.56</td>
<td>8.67</td>
</tr>
<tr>
<td>35</td>
<td>1.55</td>
<td>2.11</td>
<td>2.77</td>
<td>3.50</td>
<td>4.31</td>
<td>5.19</td>
<td>6.21</td>
<td>7.20</td>
<td>8.40</td>
<td>9.69</td>
</tr>
<tr>
<td>40</td>
<td>1.66</td>
<td>2.26</td>
<td>2.96</td>
<td>4.34</td>
<td>5.40</td>
<td>6.44</td>
<td>7.50</td>
<td>8.52</td>
<td>9.72</td>
<td>11.03</td>
</tr>
<tr>
<td>45</td>
<td>1.76</td>
<td>2.28</td>
<td>3.13</td>
<td>4.91</td>
<td>5.91</td>
<td>7.00</td>
<td>8.20</td>
<td>9.60</td>
<td>10.99</td>
<td>12.50</td>
</tr>
<tr>
<td>50</td>
<td>1.85</td>
<td>2.52</td>
<td>3.30</td>
<td>5.18</td>
<td>6.19</td>
<td>7.41</td>
<td>8.71</td>
<td>10.10</td>
<td>11.58</td>
<td>13.10</td>
</tr>
<tr>
<td>55</td>
<td>1.94</td>
<td>2.64</td>
<td>3.46</td>
<td>5.39</td>
<td>6.48</td>
<td>7.77</td>
<td>9.12</td>
<td>10.50</td>
<td>12.15</td>
<td>13.82</td>
</tr>
<tr>
<td>60</td>
<td>2.03</td>
<td>2.76</td>
<td>3.63</td>
<td>5.56</td>
<td>6.80</td>
<td>8.12</td>
<td>9.56</td>
<td>11.05</td>
<td>12.68</td>
<td>14.44</td>
</tr>
<tr>
<td>65</td>
<td>2.11</td>
<td>2.88</td>
<td>3.77</td>
<td>5.87</td>
<td>7.06</td>
<td>8.46</td>
<td>9.92</td>
<td>11.48</td>
<td>13.21</td>
<td>15.03</td>
</tr>
<tr>
<td>70</td>
<td>2.19</td>
<td>2.99</td>
<td>3.91</td>
<td>6.10</td>
<td>7.34</td>
<td>8.78</td>
<td>10.32</td>
<td>11.95</td>
<td>13.70</td>
<td>15.59</td>
</tr>
<tr>
<td>75</td>
<td>2.27</td>
<td>3.09</td>
<td>4.05</td>
<td>6.30</td>
<td>7.50</td>
<td>8.98</td>
<td>10.66</td>
<td>12.32</td>
<td>14.19</td>
<td>16.14</td>
</tr>
</tbody>
</table>

Note: Metric conversion: 1 gal = 3.785 l; 1 in = 2.54 cm; 1 psi = 6.89 kPa.
Sprinkler Application Rate

Determining Pressure
Sprinkler application rate:

\[
i \text{ (in/hr)} = \frac{96.3 \times (\text{nozzle discharge - gpm})}{\text{Spacing along lateral (ft.) \times Spacing between laterals (ft.)}}
\]
Sprinkler Application Rate
Microirrigation Application Rate

Orchard Irrigation
Determining the Application Rate & Uniformity of a Microirrigation System

Larry Schwankl
UC Cooperative Extension
559-646-6569 e-mail: schwankl@uckac.edu

Available at: http://schwankl.uckac.edu
Maintenance of Microirrigation

Clogging is the greatest “threat” to emitters.
Clogging of Microirrigation Systems

Source: Physical Clogging - Particulates
Clogging of Microirrigation Systems

Source: Physical Clogging - Particulates

Solution: Filtration
Filters:

- Screen, disk, and sand media filters are all available.

- They can all filter to the same degree BUT they req. different frequency of cleaning.
Clogging of Microirrigation Systems

Source: Chemical Precipitates

- Lime (calcium carbonate) and iron are the most common problems.
Chemical Precipitate Clogging of Microirrigation Systems

Water quality levels of concern:

- Calcium: pH > 7.5 and 2.0 meq/l (120 ppm) of bicarbonate

- Iron: pH > 4.0 and 0.5 ppm iron
Clogging of Microirrigation Systems

Source: Lime

Solution: pH Control (Acidification) + filtration
Dealing with Iron Precipitation:

1. Precipitate iron in a pond / reservoir
Dealing with Iron Precipitation:

1. Precipitate iron in a pond / reservoir

2. Chemicals (e.g. phosphonic acid, phosphonate) may keep iron in solution
 - Maintenance, not clean-up products
Clogging of Microirrigation Systems

Source: Biological Sources
Clogging of Microirrigation Systems

Source: Biological Sources

Solution: Filtration (usually media filters) + Biocide
Biological Clogging

Acid may deter but not eliminate biocide chlorine copper
Chlorine

- Sources:
 - Liquid - sodium hypochlorite.
 - Solid - calcium hypochlorite.
 - Gas chlorine.
Chlorine as a Biocide

Free Chlorine

prevent growth 1 - 2 ppm
periodic injection 10 - 20
super chlorination 500 - 1000
(reclamation)

Test for chlorine using a pool / spa test kit
Chlorine: Injection Rates

- Sodium hypochlorite (liquid)
 - Example: household bleach w/ 5.25% active chlorine.

\[
\text{Chlorine injection = System flow \times Desired Cl \times 0.006 ÷ Strength of Cl soln (ppm)}
\]

- Calcium hypochlorite (solid)
 - 65-70% available chlorine.
 - 12.8 lbs. of calcium hypochlorite added to 100 gallons of water forms a 1% solution.
 - Use above formula.
Flushing of microirrigation systems:

- Silts and clay particles pass through even the best filters.
Flushing

- Silts and clay particles pass through even the best filters.

- Need to flush the system - mainlines, submains, and laterals (in that order).
Flushing

- Silts and clay particles pass through even the best filters.

- Need to flush the system - mainlines, submains, and laterals (in that order).
 - Flush laterals by hand or use automatic flushing end caps.
Questions?

Larry Schwankl

559-646-6569 e-mail: schwankl@uckac.edu

For Powerpoint presentation go to:

http://schwankl.uckac.edu