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Soil Organic Matter Functional Group Composition in 
Relation to Organic Carbon, Nitrogen, and Phosphorus 

Fractions in Organically Managed Tomato Fields

Soil Chemistry

The objectives of this study were to examine soil organic matter (SOM) func-
tional group composition and its relationship to labile SOM fractions with 
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We ana-
lyzed soils from 13 organically managed tomato (Solanum lycopersicum) fields 
in northern California for labile organic C, N, and P fractions and by DRIFTS 
for bands representing organic functional groups, including aliphatic C-H 
(2924, 2850, 1470, 1405, 1390 cm-1), aromatic C=C (1650 cm-1) and C-H 
(920, 840 cm-1), polysaccharide and phenol C-O (1270, 1110, 1080 cm-1), and 
amine and amide N-H (3400, 1575 cm-1). Significant differences in relative 
band intensities occurred among the 13 organic tomato fields, in particular a 
relative increase in absorbance of bands representing aliphatic C-H positively 
associated with soil organic carbon (SOC), as well as permanganate-oxidizable 
carbon (POXC), extractable organic carbon (EOC) and nitrogen (EON), and 
potentially mineralizable N (PMN). In comparison, organic P fractions like 
sodium bicarbonate extractable (NaHCO3–Po) and sodium hydroxide extract-
able organic P (NaOH-Po) were poorly associated with SOC and functional 
groups represented by bands, including aliphatic C-H. This could reflect limita-
tions of DRIFTS, but is consistent with hypotheses of greater decoupling of C 
and P vs. C and N in soils. This study implicates relative differences in organic 
functional groups with differences in SOC and labile SOM fractions, and in 
agreement with previous studies, identifies absorbance of infrared bands repre-
senting aliphatic C-H functional groups in these systems as a potential indicator 
of SOM transformations related to changes in its labile fractions.

Abbreviations: ANCOVA, one-way analysis of covariance; ANOVA, one-way analysis of 
variance; ATR, attenuated total reflectance; DRIFTS, diffuse reflectance infrared Fourier 
transform spectroscopy; EOC, potassium sulfate extractable organic carbon; EON, 
potassium sulfate extractable organic nitrogen; MBC, microbial biomass carbon; MBN, 
microbial biomass nitrogen; NaHCO3–Po, sodium bicarbonate extractable organic 
phosphorus; NaOH-Po, sodium hydroxide extractable organic phosphorus; PCA, principal 
component analysis; PMN, potentially mineralizable nitrogen; POXC, permanganate-
oxidizable carbon; RDA, redundancy analysis; SOC, soil organic carbon; SOM, soil 
organic matter. 
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Diffuse reflectance infrared Fourier transform spec-
troscopy measures absorbance of infrared radiation 
(4000–400 cm-1) by bonds expressing dipole moments 

(e.g., C-O, C=O, C=C, C-H, N-H) of functional groups that 
constitute SOM (e.g., aliphatic, aromatic, amide, phenol, carbox-
ylate, polysaccharides) and strongly influence its chemical and bio-
chemical reactivity (Essington, 2004). Transformations of SOM 
such as decomposition and mineralization entail changes in func-
tional group chemistry, such as the relative increase in aromatic to 
aliphatic groups during decomposition (Hsu and Lo, 1999). By 
quantifying relative changes in functional groups, DRIFTS can 
be used to help explain SOM transformations and stabilization 
(Chefetz et al., 1998). The sensitivity of DRIFTS to small changes 
in quality and quantity of labile organic matter (Calderón et al., 
2013) and management effects on SOM (Parikh et al., 2014) 
make it well-suited for assessing SOM quality in on-farm contexts 
(Aranda et al., 2011; Veum et al., 2014). Overlap of mineral and 
organic bands is common in soils, but correction of soil spectra 
by subtraction of a mineral background can be used to improve 
DRIFTS characterization of SOM (Chefetz et al., 1998; Cheshire 
et al., 2000; Ellerbrock et al., 1999). Further corroborating its po-
tential utility, subtraction of mineral backgrounds has been used 
on soils amended with pure organic standards to validate specific 
absorbances for spectral interpretation (Calderón et al., 2013).

In organically managed systems, mineralization of SOM is cru-
cial for meeting crop nutrient demand. Relating functional group 
composition of SOM to labile fractions can provide insight to the 
degree to which the chemistry of SOM can influence its lability 
(Calderón et al., 2011a). Long-term experiments have shown that 
organic management can increase labile C in the short-term and to-
tal soil C in the longer-term (Gattinger et al., 2012; Marriott and 

Wander, 2006), though labile SOM responds more rapidly to man-
agement than total SOC (Drinkwater et al., 1998; Robertson and 
Paul, 2000). The degree to which SOM compositional changes are 
associated with these increases in SOM is largely unknown and may 
offer insight into observed increases in labile SOM.

Differences in SOM functional groups characterized by 
DRIFTS have been implicated in stabilization of C fractions un-
der different input treatments (Gillespie et al., 2014; Verchot et 
al., 2011), though the relationship of such changes with labile C 
and non-C fractions of SOM is unclear. Additionally, in contrast 
to long-term experiments, on-farm management commonly com-
bines nutrient management practices (Drinkwater et al., 1995) 
which can vary annually, and could influence labile SOM through 
reciprocal feedbacks of input diversity and soil microbial activity 
(Gude et al., 2012; Wickings et al., 2012). On-farm research across 
a landscape provides an opportunity to examine fields under dif-
ferent management practices and with variation in SOM quantity, 
allowing determination of relationships between SOM functional 
group composition with differences in labile SOM.

The objectives of this study were to characterize relative dif-
ferences in SOM functional group composition across organically 
managed fields encompassing a wide range of total and labile SOM, 
and to determine relationships between spectral data and labile 
SOM. To address this objective, DRIFTS was used to quantify rela-
tive differences in organic functional groups across 13 organically 
managed tomato fields representing a three-fold range of SOC. This 
study was part of a larger project examining how plant–soil–micro-
bial interactions affect nutrient cycling and productivity across this 
set of fields (Bowles et al., 2014). Diffuse reflectance infrared Fourier 
transform spectroscopy bands representing functional groups were 
determined for surface soils and related to SOC and labile organic 
C, N, and P fractions. We hypothesized that across the 13 fields, 
there would be differences in DRIFTS bands, and that these would 
strongly associate with differences in SOC. Relative differences in 
DRIFTS bands among fields were expected to be more dependent 
on SOC than SOM fractions. Additionally, we hypothesized that 
associations of bands with C, N, and P fractions would reflect as-
sociations of bands with SOC.

Materials and Methods
Study sites and soil sampling

The study site encompassed 13 organically managed 
fields growing Roma-type tomatoes selected to be representa-
tive of the local landscape in terms of soil characteristics, land-
scape context, and organic management via a GIS and cluster 
analysis approach (Hollander, 2012). Fields are located with-
in the Sacramento Valley in Yolo County, CA, which has a 
Mediterranean-type climate, with Thermic soil temperature and 
Xeric soil moisture regimes. Comparing soils of similar miner-
alogy and parent material facilitates spectral interpretation of 
soil DRIFTS data. The soils in this study developed from mixed 
alluvium (e.g., smectite, kaolinite, quartz) and express loam and 
silt loam textures, with circumneutral pH and no detectable 
(<0.2% CaCO3) carbonates (Table 1, Supplementary Table 1). 

Table 1.Soil properties (0-15 cm) and field nutrient amendments for 13 
organically managed fields in Yolo County, CA. Adapted from Bowles et 
al. (2014). 

Soil properties

Organic 
C†

Particle-size fractions Texture 
classField Clay Silt Sand pH Amendments‡

–––––––––––g kg-1––––––––––––
1 6.7 139 471 391 loam 6.7 manure
2 9.6 214 593 193 silt loam 6.8 manure
3 10.7 194 556 251 silt loam 6.7 manure
4 11.1 176 614 210 silt loam 6.6 vetch
5 11.2 181 601 219 silt loam 6.3 manure, vetch
6 12.5 162 635 203 silt loam 6.3 manure, vetch
7 12.8 146 521 333 silt loam 7.2 compost, vetch
8 13.2 97 484 419 loam 6.8 compost
9 13.9 140 581 278 silt loam 6.4 manure, vetch
10 16.5 157 638 206 silt loam 6.6 compost
11 17.1 175 673 153 silt loam 6.9 compost
12 18.1 112 478 410 loam 6.8 compost
13 20.0 164 664 173 silt loam 6.5 compost
† Calculated from total soil C due to the lack of inorganic C as carbonates.
‡ �Compost and manure were applied in fall 2010, with the exception of Field 

5, in which manure was applied in early spring before tomato (Solanum 
lycopersicum) transplanting. Winter vetch cover crops were incorporated 
before transplanting. Compost was composted green waste with a C/N ranging 
from 15 to 18. Manure was poultry manure or poultry litter with a C/N ranging 
from 9.8 to 15.
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The primary organic amendments included composted green 
waste, manure, and/or vetch cover crops (Table 1). Fields had 
similar tillage practices.

Surface soils (0–15 cm) were collected over a 2-wk period in 
June 2011, at the period of peak tomato growth. In each field, soils 
were randomly sampled from six plots (4 m2). Cores (15-cm diam.) 
were taken 15 cm from the centerline of the planting row. Soils were 
thoroughly mixed and visible plant residues were removed by hand 
before air-drying and grinding to pass a 2-mm sieve.

Soil Properties
Soil analyses were performed as described by Bowles et al. 

(2014). Soil particle size was determined by the laser diffraction 
method according to Eshel et al.(2004). Soil pH was determined 
on air-dried samples using a 1:2.5 soil/water ratio. Soil carbonate 
content was determined gravimetrically by loss of CO2 in presence 
of excess hydrochloric acid (U.S. Salinity Laboratory Staff, 1954). 
Total soil C was quantified at the Univ. California Davis Stable 
Isotope Facility on an Elementar Vario EL Cube elemental ana-
lyzer (Elementar, Hessia, Germany). Due to the lack of carbonates, 
total soil C was considered an accurate measure of SOC.

Organic Carbon, Nitrogen, and Phosphorus Fractions
Labile C was determined as permanganate-oxidizable C 

(POXC) according to Culman et al. (2012). Microbial biomass C 
(MBC) and N (MBN) were determined by the chloroform fumi-
gation extraction method as the difference between extractable or-
ganic C (EOC) and N (EON) in non-fumigation and fumigation 
samples (Ros et al., 2009; Vance et al., 1987). Microbial biomass 
was measured in field-moist samples stored on ice and analyzed 
within 6 h of sampling. Organic C in non-fumigation and fumiga-
tion extracts was quantified using a Dohrmann Phoenix 8000 UV-
persulfate oxidation analyzer (Tekmar-Dohrmann, Cincinnati, 
OH) and organic N was quantified using alkaline persulfate oxi-
dation (Cabrera and Beare, 1993). No correction factors were ap-
plied. Potentially mineralizable N (PMN) was determined by an-
aerobic incubation at 37°C (Waring and Bremner, 1964). Organic 
P was measured by a modified version of the Hedley fractionation 
(Tiessen et al., 1983). Briefly, air-dried soil was sequentially ex-
tracted (1:40), first by 0.5 M NaHCO3, then by 0.1 M NaOH. 
Molybdate-reactive P was determined in extracts to estimate inor-
ganic P (Murphy and Riley, 1962), and in acid-persulfate digested 
extracts to determine total P (Rowland and Haygarth, 1997). 
Organic P extractable by sodium bicarbonate (NaHCO3–Po) and 
sodium hydroxide (NaOH-Po) was calculated as the difference be-
tween total and inorganic P for the respective extract.

Diffuse Reflectance Infrared Fourier  
Transform Spectroscopy

To enhance organic bands, mineral absorbances were sub-
tracted from soil spectra (Chefetz et al., 1998). Removal of OM 
followed by subtraction of the resulting mineral spectrum from 
the original bulk soil sample enhances absorbance of the removed 
organic bands, enabling operational characterization of relative 

organic functional group composition in soil samples (Calderón 
et al., 2011a, 2011b; Cheshire et al., 2000; Clark Ehlers et al., 
2010; Cox et al., 2000; Ellerbrock and Gerke, 2004; Kaiser et 
al., 2007; McCarty et al., 2010; Nguyen et al., 1991; Painter et 
al., 1980; Rumpel et al., 2001; Sarkhot et al., 2007; Schnitzer 
and Desjardins, 1965; Šimon, 2007). Since the accuracy of ashed 
subtraction spectra can be compromised by thermal alteration of 
mineral features, chemical oxidation has been proposed as an al-
ternative (Reeves, 2012). Of soil C removal methods like hydro-
gen peroxide, sodium hyposulfite, and sodium hypochlorite, hy-
pochlorite is reported to be one of the most efficient and reliable 
to remove C without dissolving pedogenic oxides (Mikutta et al., 
2005; Siregar et al., 2005), von Lützow et al., 2007). In selecting 
hypochlorite oxidation for subtraction spectra, we compared hy-
pochlorite vs. ashing in their ability to (i) remove SOC and (ii) 
provide mineral backgrounds for subtraction. Hypochlorite oxi-
dation removed a comparable amount of SOC as ashing (85.8 ± 
3.3% vs. 95.6 ± 1.7%, respectively; n = 78), and did not produce 
significant artifacts of subtraction, in contrast to ashing. Unlike 
ashing, hypochlorite does not appear to alter bands represent-
ing mineral bonds (Si-O, Si-OH, Al-O; Supplementary Fig. 1; 
Farmer, 1974, p. 331-363). In contrast, ashed soil spectra show loss 
of Si-OH at 3700–3600 cm-1 and Al-OH at 909 cm-1. We addi-
tionally evaluated hypochlorite oxidation vs. ashing using attenu-
ated total reflectance (ATR) FTIR because this mode of FTIR 
spectroscopy offers greater sensitivity to mineral Si-O bonds than 
DRIFTS (Supplementary Fig. 2; Parikh et al., 2014). The results of 
this comparison confirm Reeves’ hypothesis (2012) that chemical 
oxidation of SOM can produce fewer changes in spectral features 
of the mineral component compared with ashing, and spectro-
scopically corroborate the ability of hypochlorite oxidation to re-
move the majority of soil C with minimal disturbance to mineral 
structure (Siregar et al., 2005).

Sodium hypochlorite oxidation was therefore performed 
to provide a mineral-enriched background used to calculate 
subtraction spectra, for all soils (6 plots × 13 fields; n = 78). 
Hypochlorite oxidation was adapted from Anderson (1961). 
Briefly, 4 g of air-dried and ground soil was thoroughly mixed 
with NaOCl (25 mL 6% w/w, pH 9.5) and incubated to allow 
oxidation (15 min, 80°C). Solutions were centrifuged (15 min, 
1081 ´ g) and the supernatant discarded. This was repeated 
twice for a total of three treatments. Soils were then washed 
twice with 20 mL of deionized H2O, sedimented by centrifuga-
tion (15 min, 1081 ´ g), air-dried, and re-ground.

Soil samples (bulk and oxidized) were air-dried and finely 
ground by hand with an agate mortar and pestle before DRIFTS 
analysis. Soils were loaded into an aluminum well and surface 
smoothed using a razor. Spectra were collected on neat soil 
samples (no KBr dilution) and corrected against KBr in ambi-
ent air using a Digilab FTS 7000 (Varian, Inc., Palo Alto, CA) 
with a deuterated triglycine sulfate (DTGS) detector and a dif-
fuse reflectance accessory (Pike AutoDIFF, Pike Technologies, 
Madison, WI). Spectra were calculated as the mean of 64 scans 
across 4000–400 cm-1 at 4 cm-1 resolution.
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Correction of spectra for minerals was performed by spec-
tral subtraction: bulk soil-oxidized soil. Subtractions were per-
formed using OMNIC 7.0 (Thermo Scientific, Waltham, MA) 
software and a subtraction factor of 1 (Smith, 2011). Spectra 
were corrected by calculating a linear tangential baseline with 
zero points representing local absorbance minima (Capriel et al., 
1995; Haberhauer et al., 1998; Smidt et al., 2002) using OMNIC 
7.0. Based on prominent peaks and shoulders observed in spec-
tra, 13 bands representing organic functional groups (Table 2, 
Fig. 1) were selected and measured for absorbance intensity. To 
quantify relative changes in band absorbance, for each spectrum 

the absorbance intensity of each of the 13 bands was normalized 
as the percent absorbance intensity of the sum of absorbance in-
tensities of the 13 bands (Haberhauer et al., 1998).

Statistical Analysis
To compare variation in functional groups represented by 

DRIFTS bands and organic C, N, and P fractions among fields, 
F-statistics were calculated using one-way analysis of variance 
(ANOVA) using the PROC GLM feature of SAS v.9.3 (SAS 
Institute, Cary, NC). Field was considered an explanatory fac-
tor (13 levels) in ANOVA models analyzed separately for each 
response variable (13 bands and 8 fractions). F-statistics, that 
is, the ratio of variance among fields to variance within fields, 
were calculated for the response variable of band intensity. The 
F-statistic from these analyses was used to compare the relative 
magnitude of field effect for each variable (Culman et al., 2012). 
To assess SOC vs. non-SOC effects on among-field variation in 
bands and fractions, F-statistics for bands and C, N, and P frac-
tions were also calculated using one-way analysis of covariance 
(ANCOVA) with SOC as a covariate. Field was considered an 
explanatory factor (13 levels) with SOC as the covariable for 
ANCOVA models analyzed separately for response variables of 
bands and fractions.

Variation and relationships among intensities of the 13 
bands were explored with principal component analysis (PCA) 
based on a correlation matrix with the vegan package in R 
(Oksanen et al., 2012). To visualize associations of bands and 
fields, component scores for each of the six plots within a field 
were used to generate 95% confidence ellipses.

To relate differences in functional group composition to 
SOM quality, two band ratios were calculated. These two indi-
ces use ratios of bands representing functional group types (e.g., 
aliphatic, O-functional group) which in previous studies have 
been established as indexes of relative decomposition and recal-
citrance of SOM (Veum et al., 2014):

1650 920 840 Index I  
2924 2850 1470 1405

+ +
=

+ + +

2924 2850 1650 1 470 1405 920 840
Index II

3400 1270 1110 1080
+ + + + + +

=
+ + +

Index I is hypothesized to be a metric of decomposition 
as the ratio of aromatic to aliphatic functional groups (Table 
2), and ratios of bands representing these two functional groups 
have been shown to increase with increasing degree of decom-
position (Chefetz et al., 1998; Hsu and Lo, 1999). Index II is 
a ratio of C- to O-functional groups (Table 2), an increase of 
which is thought to be associated with greater recalcitrance of 
SOM (Ding et al., 2002; Veum et al., 2014). Regression analysis 
was performed between indexes and SOC. Linear, quadratic, 
exponential, and power models were calculated and the model 
expressing the greatest coefficient of determination (R2) was 
chosen as the curve of best fit.

Table 2. Functional group assignments for 13 bands used to evaluate 
DRIFT spectra of SOM in surface soils (0–15 cm) of 13 organically 
managed fields in Yolo County, CA. Based on Parikh et al. (2014).

Band, cm-1 Assignment†

3400 n(N-H), n(O-H)
2924 aliphatic nas(C-H)
2850 aliphatic ns(C-H)
1650 aromatic n(C = C)
1575 amide d(N-H) and n(C = N)
1470 aliphatic d(C-H)
1405 aliphatic d(C-H)
1390 aliphatic d(C-H), potential contributions from carboxylate ns(C-O)
1270 phenol nas(C-O), carboxylic acid n(C-O)
1110 polysaccharide ns(C-O)
1080 polysaccharide ns(C-O)
920 aromatic d(C-H)
840 aromatic d(C-H), less substituted
† �n, stretching vibration; nas, asymmetric stretching vibration; ns, symmetric 

stretching vibration; d, bending vibration

Fig. 1. Mean diffuse reflectance infrared Fourier transform spectroscopy 
(DRIFTS) spectrum of surface soils (0–15 cm, n = 78) of 13 organic 
tomato (Solanum lycopersicum) fields in Yolo County, CA. Bands (13 total) 
used to analyze organic functional groups are indicated, with the band 
at 1390 cm-1 omitted for clarity. Individual spectra were corrected for 
mineral absorbances by subtraction of a mineral background obtained by 
sodium hypochlorite oxidation.
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Relationships among bands and 
C, N, and P fractions were deter-
mined by linear correlation analysis 
and redundancy analysis (RDA). 
Pearson’s correlation coefficients (R) 
were calculated for two-directional 
correlations between absorbance in-
tensities of bands and C, N, and P 
fractions. Correlation analysis was 
separately performed to calculate R 
coefficients for two-direction corre-
lations between SOC and C, N, and 
P fractions.

Redundancy analysis was used 
to further evaluate relationships of 
functional groups represented by 
bands with C, N, and P fractions. A 
type of canonical ordination, RDA 
combines regression and PCA to 
determine the structure of two re-
lated data sets (Borcard et al., 2011). 
Organic C, N, and P fractions were 
treated as an explanatory set of 
variables to constrain ordination 
of bands as the set of response vari-
ables. All variables were standardized before analysis. Including 
SOC as an explanatory variable did not change ordination of 
bands, and so was retained in the model to allow visualization 
of interrelationships of bands, SOC, and fractions. Redundancy 
analysis was performed with the rda function in the vegan pack-
age in R. The significance of the canonical model and individual 
explanatory variables were evaluated by permutation tests.

Results
Differences in Diffuse Reflectance Infrared Fourier 
Transform Spectroscopy Bands among Fields

Bands representing organic functional groups showed 
significant differences among fields (Table 3). Bands showing 
strongest field effects represented aliphatic C-H at 1390 cm-1 
(F = 24.6), 1405 cm-1 (F = 20.8), 2850 cm-1 (F = 17.6), and 
2924 cm-1 (F = 14.4). Weakest field effects were shown by bands 
representing amine functional groups at 3400 cm-1 (F = 2.5, p 
= 0.011) and 1575 cm-1 (F = 1.84, p = 0.059). In contrast to 
bands, SOM fractions showed a greater range in F-statistics, in-
dicating a more variable influence of field in comparison with 
functional groups. Relative to functional groups, SOM fractions 
showed higher and lower field effects, which were greatest for 
EON (F = 48.1), EOC (F = 42.5), and POXC (F = 32.3), and 
least for PMN (F = 8.1) and NaHCO3–Po (F = 10.3), which 
did not necessarily reflect coefficient of variation across fields 
(Supplementary Table 2).

Exclusion of SOC from field effect by its inclusion as a co-
variate in analysis of covariance (ANCOVA) models slightly and 
consistently decreased the magnitude of field effects for bands, 

but led to larger increases as well as decreases in the magnitude 
of field effect for C, N, and P fractions. Changes in F-statistic 
ranged from -9.1 to –2.2% for bands, with greatest decrease for 
1650 cm-1 and least for 840 cm-1. In contrast to bands, excluding 
SOC from field effects caused a range of changes in the magni-
tude of field effect on fractions. Generally, the magnitude of field 
effects on SOM fractions increased, with greatest changes for C 
fractions like POXC (+55.8%) and MBC (+45.8%), and least 
for P fractions NaHCO3–Po (-2.8%) and NaOH-Po (-7.9%).

Principal component analysis showed separation of bands 
along Axis 1 by representation of aliphatic C-H vs. non-aliphat-
ic functional groups (Fig. 2a), which clustered soils by field of 
increasing SOC (Table 1) when visualized on the ordination 
(Fig. 2b). Bands representing aliphatic C-H (2924, 2850, 1470, 
1405, 1390 cm-1) were most positively associated with the first 
axis (44.7% of the total variation in intensity of bands), whereas 
bands representing aromatic C-H (920, 840 cm-1), C-O of poly-
saccharide (1110, 1080 cm-1), and C-O of phenol and carbox-
ylic acids (1270 cm-1) were negatively associated with this axis. 
The band at 1650 cm-1 assigned to aromatic C=C was weakly 
associated with this axis. Fields with greater SOC separated from 
fields with lower SOC, by greater intensity for bands represent-
ing aliphatic C-H. Fields did not show separation by SOC along 
the second axis (19.2% of the total variation in band intensities), 
which showed strong positive loadings for bands representing 
polysaccharide C-O at 1110 and 1080 cm-1 and strong negative 
loadings for the 3400 cm-1 band representing amine N-H and 
hydroxyl O-H.

The DRIFTS band indices of SOM decomposition and re-
calcitrance related differently with SOC (Fig. 3). An exponential 

Table 3. F-statistic of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) 
bands and organic C, N, and P fractions in surface soils (0–15 cm) of 13 organically managed 
fields in Yolo County, CA. The F-statistic measures the magnitude of the effect field on band 
intensities or fraction size. F-statistics were calculated separately to include soil organic C 
(SOC) in field effects one-way analysis of variance (ANOVA) and to exclude SOC from field 
effects one-way analysis of covariance (ANCOVA) by inclusion of SOC as a covariate.†

ANOVA ANCOVA

Band, cm-1 F-statistic SOM fraction F-statistic Band, cm-1 F-statistic SOM fraction F-statistic
3400 2.5* POXC 32.3**** 3400 2.3* POXC 50.4****
2924 14.4**** EOC 42.5**** 2924 13.6**** EOC 55.3****
2850 17.6**** MBC 12.1**** 2850 16.7**** MBC 17.7****
1650 4.9**** PMN 8.1**** 1650 4.5**** PMN 8.1****
1575 1.8 EON 48.1**** 1575 1.7 EON 55.5****
1470 9.0**** MBN 12.8**** 1470 8.4**** MBN 12.5****
1405 20.8**** NaHCO3–Po 10.3**** 1405 19.2**** NaHCO3–Po 10.0****
1390 24.6**** NaOH-Po 14.7**** 1390 22.5**** NaOH-Po 13.5****
1270 7.4**** 1270 6.8****
1110 4.9**** 1110 4.6****
1080 4.8**** 1080 4.6****
920 4.7**** 920 4.4****
840 3.2**** 840 3.2**

* p < 0.05
** p < 0.01
**** p < 0.0001
† �SOC, soil organic carbon; POXC, permanganate-oxidizable carbon; EOC, potassium sulfate extractable 

organic carbon; MBC, microbial biomass carbon; PMN, potentially mineralizable nitrogen; EON, 
potassium sulfate extractable organic nitrogen; MBN, microbial biomass nitrogen; NaHCO3–Po, sodium 
bicarbonate extractable organic phosphorus; NaOH-Po, sodium hydroxide extractable organic phosphorus.
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decrease in aromatic C=C and C-H relative to aliphatic C-H 
functional groups (Index I) with increasing SOC (R2 = 0.55, p 
< 0.0001) indicated that a lower degree of decomposition associ-
ated positively with SOC increases. A relative increase in C- vs. 
O-functional groups (Index II) was weakly associated with in-
creasing SOC (R2 = 0.16, p < 0.001), indicating an increase in 
SOM recalcitrance that was less explained by SOC as its degree 
of decomposition.

Relationships of DRIFTS Bands with Organic 
Carbon, Nitrogen, and Phosphorus Fractions

Soil organic C and POXC overall expressed the strongest 
correlations with the 13 bands (Table 4). SOC had positive and 
strongest correlations with bands representing aliphatic C-H (e.g., 
R1405 = 0.70) and negative correlations with bands representing 
other functional groups such as aromatic C=C (1650 cm-1) and 
C-H (920, 840 cm-1), phenol and carboxylic acid C-O (1270 cm-

1), polysaccharide C-O (1110, 1080 cm-1), and amine N-H and 
hydroxyl O-H (3400 cm-1). The band at 1575 cm-1 representing 
amide N-H and C=N did not correlate with SOC.

The selected bands generally showed stronger correlations 
with organic C and N fractions as compared with organic P 
fractions (Table 4). Bands at 2924 and 2850 cm-1, showing the 
strongest correlations with SOC, also had a strong correlation 
with POXC, and with EOC and EON. Correlations of bands 
with fractions differed from correlations of bands with SOC. 
Potassium sulfate extractable organic C and EON showed stron-
ger relationships with SOC than POXC (Table 5). In contrast 
with bands representing aliphatic C-H, the aromatic C=C band 
at 1650 cm-1 showed a significantly negative correlation for 
EON, NaHCO3–Po, and NaOH-Po. Bands with fewest cor-
relations with fractions represented amine N-H and hydroxyl 
O-H at 3400 cm-1 and amide N-H and C=N at 1575 cm-1. The 
strongest correlation of a specific fraction with a band varied 
from weaker to stronger than the correlation of the fractions 
with SOC (Table 5). Equal or stronger correlations for bands as 
compared with SOC were observed for POXC, PMN, MBN, 
NaHCO3–Po, and NaOH-Po, whereas EOC, EON, and MBC 
showed stronger correlations with SOC. The relative increase in 

Fig. 2. Principle component analysis (PCA) ordination plot of (a) intensities of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) bands 
representing organic functional groups in surface soils (0–15 cm, n = 78) of 13 organic tomato (Solanum lycopersicum) fields in Yolo County, CA. Axis 1 
and 2 explain 44.7 and 19.2% of variation in band intensities. (b) Principal component scores for field plots (6 plots per field) visualized by ellipses and 
numbered for each field (n = 13). Bands represent amine and hydroxyl O-H and N-H (3400 cm-1), aliphatic C-H (2924, 2850, 1470, 1405, 1390 cm-1), 
aromatic C=C (1650 cm-1) and C-H (920, 840 cm-1), phenol and carboxylic acid C-O (1270 cm-1), polysaccharide C-O (1110, 1080 cm-1), and amide 
N-H and C=N (1575 cm-1).

Fig. 3. Diffuse reflectance infrared Fourier transform spectroscopy 
(DRIFTS) bands indices indicating differences in SOM decomposability 
(Index I) and recalcitrance (Index II) across 13 organic tomato 
(Solanum lycopersicum) fields in Yolo County, CA. Indices are based on 
intensities of DRIFTS bands representing functional groups in surface 
soils (0–15 cm). Index I indicates the relative degree of decomposition 
of SOM as the ratio of aromatic C=C and C-H to aliphatic C-H 
functional groups. Index II indicates relative recalcitrance as the ratio 
of C- to O-functional groups.
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band intensities of aliphatic C-H most strongly associated with 
labile C (POXC, EOC) and N (EON), reflecting associations of 
these fractions with SOC (Table 5).

When organic C, N, and P fractions were used to constrain 
the ordination of DRIFTS bands, the overall RDA model ac-
counted for 35% of the variation in band intensities (p < 0.001; 
Fig. 4). The constrained ordination showed similar patterns of 
bands and fields as the PCA. Significant effects on band ordina-
tion were observed for SOC and POXC (p < 0.001), as well as 
EOC, PMN, and EON (p < 0.05). Additional fractions did not 
significantly constrain ordination of bands.

Bands representing aliphatic C-H were most strongly associ-
ated with Axis 1, which accounted for 67.0% of the variation in the 
fitted model and 28.7% of the overall variation, and distinguished 
aliphatic C-H from non-aliphatic C-H functional groups (Fig. 
4a). When visualized by field (Fig. 4b) a similar trend as in PCA 
was evident, in which fields separated by SOC content along the 
first component (Axis 1) with increasing intensity of bands repre-
senting aliphatic C-H. The second component (Axis 2) explained 
a lower proportion of fitted variation in band intensities (18.3%, 
7.8% of overall variation) and did not show associations of bands 
by functional group. Fields with higher SOC and 
receiving composted green waste separated from 
plots with lower SOC receiving manure, by greater 
band intensities for aliphatic C-H.

Discussion
Functional Group Composition across 
Thirteen Fields in Relation to Soil 
Organic Carbon

DRIFTS analysis identified relative enrich-
ment in aliphatic C-H functional groups with 

increasing SOC as the most salient change in functional group 
composition of SOM across the 13 organic tomato fields. The 
greater differentiation of fields by absorbance intensity of ali-
phatic C-H relative to other functional groups reflects the SOC 
gradient among fields, since aliphatic C-H bands were most as-
sociated with SOC compared with other bands. Previous work 
using laboratory incubations has shown that decomposition of 
the light fraction (LF) of SOM occurs with a decrease in absor-
bance at 2930–2850 cm-1, suggesting that these aliphatic C-H 
bands mark the presence of labile C (Calderón et al., 2011b). Yet 
aliphatic C-H functionalities include methylene (-CH2) and 
methyl (-CH3) groups that occur with functional groups like 
amide N-H and aromatic C=C in organic macromolecules like 
polypeptides, and are present in compounds considered labile 
(e.g., amino sugars) and recalcitrant (e.g., lignin). Until more soil 
decomposition data is available, caution should be taken in in-
terpreting DRIFTS characterizations of functional group com-
position as causing or resulting from changes in SOM lability 
(Kleber, 2010).

Previous studies suggest that the observed increase in 
aliphatics vs. aromatic functional groups with increasing SOC 

Table 4. Pearson coefficients (R) for two-directional correlations between absorbance intensity of 13 diffuse reflectance infrared 
Fourier transform spectroscopy (DRIFTS) bands representing organic functional groups with soil organic C (SOC) and organic C, 
N, and P fractions in surface soils (0–15 cm) of 13 organically managed fields in Yolo County, CA. Band intensities are normalized 
to the total absorbance intensity of the 13 bands.†

Band, cm-1 SOC POXC EOC MBC PMN EON MBN NaHCO3–Po NaOH-Po
3400 -0.23 * -0.42**** -0.28*
2924 0.51**** 0.70**** 0.49**** 0.25* 0.31** 0.28*
2850 0.54**** 0.73**** 0.53**** 0.22* 0.27* 0.35** 0.31**
1650 -0.37*** -0.41**** -0.29* -0.54**** -0.27* -0.30**
1575 0.29* 0.28*
1470 0.55**** 0.45**** 0.47**** 0.45**** 0.35**
1405 0.70**** 0.56**** 0.49**** 0.23* 0.49**** 0.39*** 0.25*
1390 0.71**** 0.57**** 0.47**** 0.30** 0.54**** 0.39*** 0.31**
1270 -0.35** -0.38*** -0.27*
1110 -0.59**** -0.29* -0.46**** -0.27* -0.37** -0.49****
1080 -0.34** -0.23* -0.30** -0.26* -0.26*
920 -0.39** -0.48**** -0.23*
840 -0.43**** -0.34** -0.30** -0.26*

* p < 0.05
** p < 0.01
*** p < 0.001
**** p < 0.0001
†�SOC, soil organic carbon; POXC, permanganate-oxidizable carbon; EOC, potassium sulfate extractable organic carbon; MBC, microbial biomass 
carbon; PMN, potentially mineralizable nitrogen; EON, potassium sulfate extractable organic nitrogen; MBN, microbial biomass nitrogen; 
NaHCO3–Po, sodium bicarbonate extractable organic phosphorus; NaOH-Po, sodium hydroxide extractable organic phosphorus.

Table 5. Pearson coefficients (R) for two-directional correlations between soil 
organic C (SOC) and organic C, N, and P fractions in surface soils (0–15 cm) of 
13 organically managed fields in Yolo County, CA.†

POXC EOC MBC PMN EON MBN NaHCO3–Po NaOH-Po
0.69**** 0.84**** 0.56**** 0.52**** 0.78**** 0.31** 0.23*

* p < 0.05
** p < 0.01
**** p < 0.0001
† �POXC, permanganate-oxidizable carbon; EOC, potassium sulfate extractable organic 

carbon; MBC, microbial biomass carbon; PMN, potentially mineralizable nitrogen; 
EON, potassium sulfate extractable organic nitrogen; MBN, microbial biomass nitrogen; 
NaHCO3–Po, sodium bicarbonate extractable organic phosphorus; NaOH-Po, sodium 
hydroxide extractable organic phosphorus.
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could reflect several mechanisms. Aliphatic enrichment has 
been observed during residue decomposition (Ait Baddi et al., 
2004; Hsu and Lo, 1999), provides a measure of SOM biologi-
cal quality (Veum et al., 2014) and is associated with increases 
in labile and total soil C (Demyan et al., 2012; Gerzabek et al., 
2006; Giacometti et al., 2013). This has been proposed to result 
from higher inputs of aliphatic-rich OM (e.g., plant residues 
from cover crops) and deposition of aliphatic compounds from 
increased microbial biomass (Aranda et al., 2011). However, for 
the fields examined in this study, neither aliphatic C-H nor other 
functional groups associated with fields based on cover crops, 
and aliphatic C-H band intensity correlated relatively poorly 
with MBC and MBN, which correlated weakly with SOC across 
fields (Bowles et al., 2014). One possibility for the weak relation-
ships may be that microbial biomass responds rapidly to man-
agement and environmental changes (Kallenbach and Grandy, 
2011) whereas SOM composition may integrate changes over 
a longer period (Solomon et al., 2007). Thus, band intensity of 
aliphatic C-H may serve as a more stable indicator of labile C. 
The inverse association of the degree of SOM decomposition 
(Index I) and SOC may reflect accumulation of less decomposed 
organic matter that occurs with high C loading of soil (Six et al., 
2002; Stewart et al., 2008). Relative changes in bands represent-
ing functional groups suggest that SOM quality may change with 
SOM content. Index I and Index II show a conflicting decrease 
in decomposition maturity and increase in recalcitrance, though 
the former shows a stronger relationship with increasing SOC. 
This may reflect chemistry-centric definitions of decomposition 
and recalcitrance (Schmidt et al., 2011), or the bulk character-
ization of SOM. Indices may be sensitive to specific fractions of 

SOM, and so both may increase with increasing SOC as a mat-
ter of stoichiometry. This illustrates the potential of DRIFTS to 
provide measures of functional group composition implicated in 
labile SOM, but also demonstrates limitations on causal conclu-
sions from solely spectroscopic approaches.

Functional Group Composition and Soil Organic 
Matter Fractions

The weaker influence of field effects on bands as compared 
with C, N, and P fractions (Table 3, ANOVA) and its lower sen-
sitivity to non-SOC field effects (Table 3, ANCOVA) indicates 
functional group composition is more strongly associated with 
SOC among different fields than C, N, and P fractions. This 
may reflect the more direct relationship of functional groups 
with SOM as its molecular scaffold. Additionally, functional 
group composition of SOM could be constrained by similar 
stoichiometric limitations in living OM (e.g., membrane lipids, 
proteins), and by converging pathways of decomposition and 
stabilization in the soil environment (Wickings et al., 2012). 
Measured fractions reflect processes such as mineralization 
(e.g., POXC, PMN) or are biomass-based measures (e.g., MBC, 
MBN), which is likely why these fractions are sensitive to field-
specific differences like nutrient management (Culman et al., 
2012; Kallenbach and Grandy, 2011). Fractions like POXC and 
MBC are considered labile and are strongly associated (Culman 
et al., 2012; DuPont et al., 2010; Melero et al., 2009; Weil et al., 
2003), yet showed different associations with bands, suggesting 
differences in functional group chemistry may underlie similarly 
labile fractions.

Fig. 4. Redundancy analysis (RDA) ordination plots of intensities of DRIFTS bands representing organic functional groups, constrained by organic 
C, N, and P fractions in surface soils (0–15 cm, n = 78) of 13 organic tomato (Solanum lycopersicum) fields in Yolo County, CA. (a) Vectors 
represent soil organic matter (SOM) fractions. Axes 1 and 2 represent 28.6 and 8.0% of the total variation in band intensities, ordination of which 
was significantly constrained by organic C, N, and P fractions (p < 0.0001). (b) 95% confidence ellipses for RDA field scores (n = 6), numbered 
by field (n = 13) and colored by organic amendment used in 2010–2011. Dotted ellipses indicate fields in which vetch cover crop was grown in 
addition to an amendment (manure or composted green waste).



www.soils.org/publications/sssaj	 ∆

Organic Carbon and Nitrogen vs.  
Phosphorus Fractions Relate Differently to 
Functional Group Composition

Positive associations of aliphatic C-H bands with SOC as 
well as labile organic C fractions, in particular POXC, EOC, 
PMN, and EON, suggest changes in aliphatic C-H are impli-
cated in increases in labile organic C and N fractions. This may 
explain previous findings of proportionally greater increases in 
labile SOM fractions under organic management that increase 
SOM content (Drinkwater et al., 1998; Graham et al., 2002; 
Marriott and Wander, 2006; Robertson and Paul, 2000). In 
contrast, organic P fractions weakly correlated with aliphatic 
C-H. Though NaOH-Po appeared to associate with aliphatic 
C-H (Fig. 4, RDA), it did not correlate with bands represent-
ing this functional group but did relate to SOC, suggesting an 
association of this organic P fraction with SOC unrelated to the 
observed trend of increasing aliphatic C-H with SOC.

Different relationships of organic C and N vs. organic P 
fractions may reflect greater coupling of C and N relative to C 
and P in soils (Condron and Tiessen, 2005) and/or the strong 
effects on soil P of P-rich inputs like manure common in organic 
systems (Lehmann et al., 2005). On the other hand, this may re-
flect the lower proportion of P relative to C and N in soils and 
SOM (Essington, 2004), which decreases DRIFTS sensitivity 
to P-O bonds (He et al., 2006). No significant correlations were 
found for organic P fractions for bands at 1110 and 1080 cm-1, 
despite absorbance of organic P functional groups in this region, 
chiefly ѵ(C-O-P) at 1115 cm-1 and ѵ(P-O) at 1085 cm-1 (Parikh 
et al., 2014).

Conclusions
This study demonstrates that there are significant differ-

ences in organic functional group composition detectable by 
DRIFTS across 13 organic tomato fields, and that these dif-
ferences are strongly related to SOC and specific labile organic 
C and N fractions. The on-farm approach provided the wide 
range of variation necessary to evaluate relationships between 
functional group composition and SOM in real world settings, 
thus complementing experimental research focusing on effects 
of specific amendments or long-term management. Organic P 
fractions were in comparison poorly associated with bands, as 
well as SOC, potentially reflecting biochemical decoupling of C 
and P relative to C and N in soils. Increases in bands represent-
ing aliphatic C-H functional groups associated positively and 
most strongly with increases in SOC and fractions. Soil organic 
matter transformations influencing specific labile fractions may 
therefore involve changes in relative aliphatic C-H abundance. 
Diffuse reflectance infrared Fourier transform spectroscopy 
characterization of functional group composition offers poten-
tial for understanding relationships of SOM content and lability.
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