Automation of Surface Irrigation Systems

Khaled Bali, Tom Gill (USBR), Dale Lentz (USBR), Daniele Zaccaria (UCD), Dan Putnam (UCD), Rachael Long (Yolo), Daniel Munk (Fresno), Blake Sanden (Kern)

kmbali@ucanr.edu

UC Cooperative Extension-Imperial County
UC Desert Research and Extension Center
Holtville, CA

Phase 1: Cooperating Partners- Imperial Valley (2011-Date)

- UCCE/UC Desert Research and Extension Center (DREC)
- US Bureau of Reclamation Yuma Area Office Water Conservation Field Services Program
- US Bureau of Reclamation Science & Technology Program
- US Bureau of Reclamation Hydraulic Investigations and Laboratory Services Group
- Control Design Inc. (DREC), Rubicon Water (DREC & commercial field)
- Alfalfa Grower

Phase 2: Cooperating Partners (2014-2017)

- UCCE (Imperial, Kern, Fresno, and Yolo) and UCD (Daniele and Dan Putnam)- four locations
- California Department of Water Resources
- US Bureau of Reclamation Science & Technology Program
- US Bureau of Reclamation Hydraulic Investigations and Laboratory Services Group
- Control Design Inc., Rubicon Water, Observant, (tule ET sensors?)
- Alfalfa Growers

California

- Alfalfa is California's largest agricultural water user
 - About 1 million acre of alfalfa
 - About 4.0 5.5 million ac-ft of water per year
- Surface (flood) irrigation is the primary method of irrigation for alfalfa and other field crops in California
- Imperial Valley (2015):
 - 128,623 acres (140,134 acres same month last year)
 - Water use 6.5-7 ac-ft/ac

Irrigation Methods in California:

- 1- Surface irrigation (flood):
 - Border strip (flat) irrigation (slope 0.1-0.2%)
 - Furrow irrigation (slope)
 - Basin irrigation (zero slope)
- 2- Sprinkler Irrigation (various types)
- 3- Drip Irrigation (various types)
 - Surface drip
 - Subsurface drip

Surface irrigation:

- Water application methods where water is applied over the soil surface by gravity (no energy is needed).
- Most common irrigation system throughout the world
- Has been used for thousands of years
- Land leveling practices over the past century made it more efficient
- High efficiency possible on medium and heavy soils

Surface irrigation methods:

- Border (flat) irrigation

Runoff rate: 5-20% (vary)

- Furrow (bed) irrigation

Runoff rate: 15-30% (vary)

Surface runoff:

Water losses: lower efficiency

Nutrient losses: surface runoff & deep percolation

Pesticides losses: mostly surface runoff &

some with deep percolation

* Usually no runoff with basin irrigation

Surface Irrigation

Applied water = Root zone storage + runoff + deep percolation

On-Farm Water Conservation =Higher Application Efficiency (AE)

IRRIGATION = Evapotranspiration (ET)+ DEEP PERCOLATION + Runoff

A + B + (

Application Efficiency (AE)= A/(A+B+C)

To achieve higher efficiency, reduce B and/or C

BUT

Need to have a balance,

Deep Percolation sometimes is needed for salinity control

(650 ppm ~ 0.9 tons of salt/ac-ft)

Runoff is needed for Uniformity (100% AE means under irrigation)

- Border irrigated field
- 60' wide borders
- 1200' run length
 - Supply Canal
 - Runoff Canal
 - Flow Measurement

Automation of Surface Irrigation Systems

- Irrigators typically work in 24-hr shifts
- Make decisions on when to turn the water off based on a number of variables (flow rate, advance rate, crop height, etc)
- Automation: smart decisions based on accurate and real-time data (flow rate, advance rate, automated gates, ETc, and other variables)

Optimization (Automation of surface irrigation systems)

- The process of considering all flood irrigation variables to improve on-farm irrigation efficiency
- Adjust irrigation time to allow for changing crop roughness (height and density of the crop)
- Adjusting border/set length to allow for variable soil type across the field
- Adjusting flow rate to an irrigation set (one or more border/land) to improve efficiency
- Computer simulation models are needed
- Accurate measurements during irrigation events (flow rate and advance rate)

University of California
Agriculture and Natural Resources

Optimization

- Soil type 114 & 115 (heavy soils)- lower flow rate or high flow rate will work depending on the time of the year (considerations: erosion rate & scalding)
- Soil type 106 or 110 (lighter soil)- higher flow rate to increase efficiency
- Soil type 115 & 106 (change flow rate during the irrigation event)

Soil Web via Gmaps!

Automated Surface Irrigation:

Previous UCCE-USBR efforts (unsuccessful)

Now 80-ac field (has state of the art system)

Motorization of Existing Gates:

Existing Port Gates

Gates Motorized w/Linear Actuators

Automated Surface Irrigation:

Current Project: Turnout Flow Control Prototypes

Automated Surface Irrigation:

Current Project: Turnout Flow Control

Prototypes

Automation of Surface Irrigation Systems

Automated Surface Irrigation

Automation Demonstration Layout

Turnout System Compatible with Automated Operation:

Tarp Gate Turnout

- **Linear Actuator Operator**
- 2 Rectangular Frames,
 - **Vertical Stationary Frame**
 - **Hinged Frame**
- **Fitted Tarp**

Turnout System Compatible with Automated Operation:

Tarp Gate Turnout

"Drop-In" Installation & "Self Contained System"

Turnout System Compatible with Automated Operation: Tarp Gate Turnout

Canal Bank or Culvert Outlet Installation

Automation System Stations

Flow Measurement – Main Control Station

Flow Measurement

 Two-level "venturi solution" flow measurement @ longthroated flume.

 Third level measured to monitor canal fill below flume

Automation System Stations

Turnout Stations

Automation System Stations

Field Advance Sensing Station

Automated Surface Irrigation

Automation System Stations

Field Runoff Measurement Station

Automation Operating Cycle: Startup

Main Control (MC)

- MC placed in "Auto" Mode
- MC monitors canal fill
- MC keeps "running average" flow rate

Automation Operating Cycle: Once Canal has Filled -> Start Irrigation

- Main Control (MC)
- Field Advance (FA)
- Section 1 Gate (G1)
 - MC activates FA
 - MC opens G1
 - MC computes inc vol
 - MC keeps sect vol total
 - MC keeps field vol total

Automation Operating Cycle: Water Sensed @ Field Advance

- Main Control (MC)
- Field Advance (FA)
- Section 1 Gate (G1)
- Section 2 Gate (G2)
- Runoff Station (RO)
 - **FA alerts MC**
 - MC identifies Tgt Vol
 - MC opens G2
 - MC closes G1
 - MC Activates RO
 - MC estimates ending time

Automation Operating Cycle: Section 1 Runoff Measurement Complete

- O Main Control (MC)
- Section 2 Gate (G2)
- Runoff Station (RO)
 - **RO reports RO Vol to MC**
 - MC compares RO Vol & Tgt Vol
 - MC adjusts Tgt Vol if needed
- MC estimates ending time

Automation Operating Cycle: Target Volume reached for Section 2 (& subsequent sections)

- Main Control (MC)
- Section 2 Gate (G2)
- Section 3 Gate (G3)
 - MC opens G3
 - MC closes G2
 - MC updates estimated ending time

Automation Operating Cycle: End of Irrigation

- Main Control (MC)
- Section n Gate (Gn)

- MC in alert mode
- Activities for end of irrigation expected to be "site specific"

Automation Operating Cycle: Operation w/Field Advance Sensor in Each Section

- Main Control (MC)
- Section n Gate (Gn)
- Field Advance n (FA_n)
 - FA_n(s) placed at "cut-off" **locations**
- One or multiple FA units may be used
- FA placement may be adjusted from section to section

Inflow Variation, 11/05/2014 Field Test

Automated Surface Irrigation Field Test Additional system components:

Office Base Station

Automated Surface Irrigation Field Test Additional system components:

Portable Station

Current Project Status:

- Programming for basic functions has been developed and tested for each station type
- User menu functions of Main Control program are currently being refined
- Main Control programming for multiple field sensor option is being developed.

Summary and Desired Outcomes

- Water conservation (reducing runoff to less than 5% of applied water)
- Labor savings (one irrigator per 4 fields vs 1 irrigator per field)
- Value of conserved water (currently \$285 per ac-ft in IID service area)
- Drought and limited water supplies (deficit irrigate the lower end of the field)

Thank you