Adapting Water Rights to Face Climate Change Impacts: A Comparison of California and Spain Madrid, Spain 25 April 2019

What do climate change models tell us? Spain

L. Garrote

UNIVERSIDAD POLITÉCNICA DE MADRID

The Botin Foundation and Rosenberg International Forum on Water Policy University of California Agricultural and Natural Resources

• Projections of runoff

- Studies made by Cedex

• Projections of water availability

- WAAPA model, global for Europe and specific for Spain
- Analysis of factors determining water availability

Role of adaptation

- Effect of policy on water availability

Studies of Cedex (2010, 2017) Methodology

Hydrologic model

Study of 2010 6 projections SRES A2 6 projections SRES B2

Study of 2017 6 projections RCP4.5 6 projections RCP8.5

Figura 77. Esquema conceptual del módulo de evaluación de RRHH de SIMPA.

Hydrologic projections

Results by basin

Climate forcing

Comparison of studies by Cedex (2010-2017)

Tabla 27. Rango y media de ∆ en las variables hidroclimáticas en España en cada PI y escenario de emisiones según el presente estudio y comparación con el de CEDEX 2010.

				Pre	esente	e Esti	ıdio		CEDEX 2010							
	ESPAÑA		RCP 4.5				RCP 8.5	5	S	SRES B2			SRES A2			
			Mx	Med	Mn	Mx	Med	Mn	Max	Med	Min	Max	Med	Min		
Precipitation	(%	2010-2040	9	-2	-8	1	-4	-8	-3	-6	-10	0	-5	-11		
	PRE (9	2040-2070	-1	-6	-13	3	-8	-16	-3	-8	-12	-4	-9	-16		
		2070-2100	1	-7	-17	-2	-14	-24	-2	-9	-14	2	-17	-28		
Temperature	TEM (ºC)	2010-2040	1.5	0.9	0.4	1.6	1.0	0.5	1.9	1.6	1.4	1.8	1.5	1.2		
		2040-2070	2.6	1.6	0.9	3.4	2.3	1.7	3.0	2.5	2.0	3.4	2.9	2.5		
		2070-2100	3.2	2.0	1.5	5.6	3.9	2.8	4.4	3.6	2.7	5.8	4.8	4.0		
Potential ET	ETP (%)	2010-2040	6	3	1	7	4	2	8	7	6	6	6	6		
		2040-2070	11	7	4	14	10	8	14	12	10	14	13	12		
		2070-2100	14	9	6	24	17	12	19	15	13	28	21	19		
Actual ET	ETR (%)	2010-2040	4	-1	-3	0	-3	-3	-3	-5	-8	1	-3	-7		
		2040-2070	-2	-3	-5	0	-4	-7	-1	-6	-10	-2	-6	-10		
		2070-2100	0	-3	-5	-2	-6	-11	0	-7	-12	2	-12	-24		
Runoff	ESC (%)	2010-2040	20	-3	-13	4	-7	-14	1	-8	-18	-2	-8	-22		
		2040-2070	-1	-11	-23	9	-14	-29	-5	-11	-21	-8	-16	-34		
		2070-2100	4	-13	-31	-1	-24	-43	-1	-14	-28	0	-28	-40		

Similar results, slightly less reduction in runoff

Results of Cedex 2017

Projected reduction of runoff (%)

Tabla 24. Δ (%) ESC en cada DH y PI según cada proyección. Se indican los valores máximo (Mx), mínimo (Mn) y el promedio (Med) para cada RCP. Los colores reflejan la gradación del cambio.

ESC Anual (%)		RCP 4.5									RCP 8.5								
		F4A	M4A	N4A	Q4A	R4A	U4A	Mx	Med	Mn	F8A	M8A	N8A	Q8A	R8A	U8A	Mx	Med	Mn
Duero	2010-2040	2	-7	-15	-12	-14	25	25	-3	-15	6	-5	-17	-19	-11	-5	6	-9	-19
	2040-2070	-10	-8	-14	-17	-27	1	1	-13	-27	-12	-20	-23	-19	-31	15	15	-15	-31
	2070-2100	-6	-21	-18	-13	-36	9	9	-14	-36	-23	-28	-15	-40	-46	3	3	-25	-46
Tajo	2010-2040	5	-4	-22	-10	-17	31	31	-3	-22	12	-5	-20	-20	-13	-4	12	-8	-20
	2040-2070	-6	-3	-14	-13	-29	3	3	-11	-29	-8	-19	-31	-16	-34	19	19	-15	-34
	2070-2100	-2	-20	-23	-13	-40	12	12	-14	-40	-23	-23	-18	-41	-51	7	7	-25	-51
Guadiana	2010-2040	9	-5	-35	-12	-23	46	- 46	-3	-35	18	-8	-30	-22	-20	5	18	-9	-30
	2040-2070	-6	-3	-21	-13	-36	9	9	-12	-36	-9	-23	-45	-19	-45	33	33	-18	-45
	2070-2100	1	-25	-37	-15	-50	22	22	-17	-50	-27	-26	-27	-50	-63	15	15	-30	-63
Guadalquivir	2010-2040	10	-4	-38	-11	-24	52	52	-2	-38	18	-10	-30	-22	-21	8	18	-10	-30
	2040-2070	-3	-2	-22	-10	-37	15	15	-10	-37	-6	-24	-51	-17	-48	35	35	-18	-51
	2070-2100	2	-22	-43	-16	-51	18	18	-19	-51	-30	-27	-32	-49	-67	13	13	-32	-67
Segura	2010-2040	6	-4	-21	-13	-22	15	15	-7	-22	12	-13	-19	-23	-19	7	12	-9	-23
	2040-2070	-1	-7	-10	-18	-32	-1	-1	-11	-32	-10	-17	-37	-23	-48	-3	-3	-23	-48
	2070-2100	-6	-19	-28	-17	-43	-9	-6	-20	-43	-36	-30	-34	-44	-63	-17	-17	-38	-63
Júcar	2010-2040	5	1	-17	-7	-26	21	21	-4	-26	15	-12	-20	-20	-25	-4	15	-11	-25
	2040-2070	-6	-4	-7	-11	-34	-8	-4	-12	-34	-12	-21	-34	-22	-49	-7	-7	-24	-49
	2070-2100	-7	-16	-26	-18	-46	-11	-7	-21	-46	-36	-28	-26	-41	-62	-20	-20	-36	-62
Ebro	2010-2040	0	-6	-3	-7	-12	15	15	-2	-12	-3	-9	-7	-9	-10	-2	-2	-7	-10
	2040-2070	-9	-12	-10	-13	-19	-5	-5	-11	-19	-9	-19	-14	-16	-25	4	- 4	-13	-25
	2070-2100	-7	-16	-12	-10	-25	-3	-3	-12	-25	-25	-33	-14	-32	-40	-10	-10	-26	-40

Large variability, strong reduction of runoff

Results of Cedex 2010-2017

Projected reduction of runoff (%)

ESC 2040-2070

Large variability, strong reduction of runoff (10% for RCP4-5)

• Runoff is a proxy for changes in water availability

• But there are other factors...

- Changes in variability
- Water management: reliability, environmental flows, storage

• Simple model to estimate water availability

- Streamflow, storage, demands and environmental flows
- Analysis under climate change scenarios

WAAPA Model

Potential Water Availability analysis

DEMAND-RELIABILITY CURVE

PWA analysis under climate change

DEMAND-RELIABILITY CURVE

- Climate scenarios were taken from regional models in different projects: PRUDENCE, ENSEMBLES and CORDEX
 - 8 A2, 4 B2, 3 A1B, 5 RCP2, 5 RCP4, 5 RCP6, 5 RCP8
 - Time slices CTL: 1960-2000 FUTURE: 2070-2100

• Streamflow data were corrected for bias

 Significant reduction in most basins

Analysis of European basins

CHANGE in RUNOFF

CHANGE in AVAILABILITY

0.5

0

-0.5

-1.5

-2

Scenario RCP4.5

Loop over 5 models

Analysis of Uncertainty

Runoff: Model uncertainty larger than emission scenario uncertainty Availability: same level of uncertainty (storage)

Specific study of Mediterranean basins

Climate projections

Climate projections

Reduction in MAF and larger increase in CV Stronger forcing in areas already exposed to water scarcity

Climate projections

Reduction in MAF and larger increase in CV Stronger forcing in areas already exposed to water scarcity **Potential Water Availability**

Potential Water Availability

Large uncertainty and significant reduction of PWA Model uncertainty larger than emission scenario uncertainty

Potential Water Availability

Large uncertainty and significant reduction of PWA Model uncertainty larger than emission scenario uncertainty

Projected changes of MAF vs. PWA

Projected changes of MAF vs. PWA

Changes in MAF are a good proxy for changes in PWA We found stronger dispersion in areas with high variability

Projected changes of MAF vs. PWA

Changes in MAF are a good proxy for changes in PWA We found stronger dispersion in areas with high variability Changes in MAF vs PWA

Changes in MAF vs PWA

We found a range of behaviors:

1 similar reduction; **2** less reduction PWA; **3** cross; **4** more reduction PWA

Changes in MAF vs PWA

We found a range of behaviors: 1 similar reduction; 2 less reduction PWA; 3 cross; 4 more reduction PWA

- Strong reductions of runoff and water availability
- Policy and management may modify availability
 - Water allocation to environmental flows
 - Investment in infrastructure or improved management
 - Governance: social arrangements to accept less reliability
- What is the impact of policy on water availability?
 - Simple analysis based on modelling framework

Adaptation options

POLICY: densification of water transport and distribution networks; enhancement of management capacity

Reference Governance

Water users do not share resources

Improved Governance

Water users cooperate and share resources

POLICY: enhancement of legal framework for water sharing; capacity building to improve education of water users

Effect of adaptation: management and governance

Adequate management and governance may compensate the reduction of availability

Policy target

- Maintain acceptable reliability under climate change scenarios

Main policy action

- Demand reduction to maintain reliability under climate change

Additional policy actions

- Supply enhancement through increased reservoir storage
- Increase water efficiency in urban use
- Modify environmental flow conditions

Effect of adaptation: Storage, Environmental Flow, Efficiency

The range and effectivity of measures vary strongly across basins

Modeling tools

- Model performance is very poor while describing the currently observed features of hydrologic regime relevant for water availability
- Model uncertainty is very wide, equal or greater than emission scenario uncertainty. Is this of any use?

Water availability projections

- Climate change impacts on water availability are uncertain and heterogeneous, but are expected to be strongly negative in Spain
- Impacts are stronger in areas already affected by water scarcity

Role of adaptation policy

- Improved water management and water governance may compensate adverse effects of climate on water availability
- Effectiveness varies across basins, requiring local analyses

Adapting Water Rights to Face Climate Change Impacts: A Comparison of California and Spain Madrid, Spain 25 April 2019

What do climate change models tell us? Spain

L. Garrote

UNIVERSIDAD POLITÉCNICA DE MADRID

The Botin Foundation and Rosenberg International Forum on Water Policy University of California Agricultural and Natural Resources