Adoption of Improved Water Technology in Agriculture: Drivers and Barriers

11th Rosenberg International Forum on Water Policy University of Cape Town, 24-27 October 2023

Johannes Sauer and Maria Vrachioli Technical University of Munich Group of Production and Resource Economics 25.10.2023

Adoption of Improved Water Technology in Agriculture: Drivers and Barriers

Johannes Sauer

11th Rosenberg International Forum on Water Policy

University of Cape Town, 24-27 October 2023

Outline

- I. Water Scarcity and Agriculture
- II. Technology and Adoption
- **III.** Drivers and Barriers
- IV. Measurement
- V. Conclusion

ТШП

Water on Earth

Water Stress and Water Scarcity

- (1) Increase in population (world population projected to reach 8.6 billion by 2030).
- (2) Steadily increasing agricultural and industrial production (competition among different users is rising).
- (3) Significant water pollution and wastage.
- (4) Climate change intensifies the situation (supply of water is becoming more unpredictable due to climate change).

Water: Scarce natural resource with high demand from multiple users.

ТЛП

Why agricultural water?

Agriculture: Largest user of freshwater withdrawals worldwide (70-90%).

Current Direction: Sustainable agricultural water management initiatives.

Shift to more efficient, water-saving irrigation technologies (FAO 2012, IFPRI 2017, United Nations 2015, World Bank 2017)

Enhance the economic performance of irrigated agriculture and promote the sustainability of agricultural production.

ТЛП

What is technology?

- a technology is a means to fulfill a human purpose
- a technology is an assemblage of practices and components
- a technology is the entire collection of devices and engineering practices available to a culture

OECD: "the collection of mechanical arts that are available to a culture to make its economy and society function"

... as a means to fulfill a purpose, a technology may be ...

- a method (e.g. a particular speech recognition algorithm)
- or process (e.g. a filtration process in chemical engineering)
- or device (e.g. a type of diesel engine)

ПП

What is technology?

 $\mathsf{Y} = \mathsf{f}(\mathsf{X})$

Y = agricultural output

f = general agri production technology

 $X = (x_1 \text{ labor}, x_2 \text{ land}, x_3 \text{ water } \dots x_n)$

 $x_3 = g(x_{w4} \text{ wat purch}, x_{w1} \text{ labor}, x_{w5} \text{ material}, x_{w6} \text{ capital} \dots)$

 g_o = irrigation technology

XW = water specific (share of) inputs

 g_n = AI controlled irrigation technology

 $Y = f(X, g_n(XW), Z)$

Adoption of Agricultural Technologies

Technology Adoption and Diffusion

Hypotheses to explain direction of technological change

Hypothesis of entrepreneurship (J. Schumpeter, T.W. Schultz)

Hypothesis of induced innovation (Y. Hayami, V. W. Ruttan und H.P. Binswanger)

Hypothesis of path dependency of technological change (N. Rosenberg, W.B. Arthur)

ТЛП

Technology Adoption and Diffusion

S-shaped diffusion curve

Rogers (1962, 1995)

... diffusion as the process by which an innovation is **communicated** through certain channels over time among the members of a social system

... found that diffusion is an S-shaped function of time

Global Irrigation Technology Pattern

⁽Jägermeyr et al., 2015)

Change in % Irrigated Land in Africa

Emerging Approaches

In the last years, alternative approaches to water-conservation technologies have emerged that started to gain more attention

- Groundwater management and metering
- Reuse of treated wastewater
- Implementation of AI in irrigation control
- Connection with other existing technologies (complementarity and substitutability)

Benefits of Improved Water Technology

The adoption of water conserving irrigation technologies can:

Decrease crop failure risk associated with extreme climate events	Conserve natural resources	Boost crop yields and farm employment	
Increase agricultural production	Improve land productivity	Enhance Incomes and Food Security	

Example: Drip irrigation

Increased Crop Yields Water Conservation Improved Crop Quality Reduced Labor Costs Minimized Soil Erosion Adaptation to Climate Change Diversification of Crops High initial costs Clogging

Adoption Decision

With new technology available it still is on the farmers to adopt it.

"[Adoption is] a decision to make full use of an innovation as the best course of action available" (Rogers, 1995)

Different factors were found to influence the adoption of advanced water technology for farmers all over the world.

- Socioeconomic drivers
- Environmental drivers
- Institutional drivers

ТЛП

Socioeconomic Drivers

Age: the younger, the more open to new technologies

Availability of financial and technical support, i.e. extension services

Feder G, Just RE, Zilberman D (1985) Adoption of agricultural innovations in developing countries: A survey. *Econ Dev Cult Change* 33:255–298

Green, Gareth, David Sunding, David Zilberman, and Doug Parker. Explaining irrigation technology choices: a microparameter approach. *American Journal of Agricultural Economics* 78, no. 4 (1996): 1064-1072.

Feder G, Umali DL (1993) The adoption of agricultural innovations. A review. *Technol Forecast Soc Change* 43:215–239.

Income level and affordability

Johannes Sauer (TUM) | Production and Resource Economics

Agroclimatic | Environmental Drivers

Farm size and tenure

Caswell, M.F., and Zilberman, D. (1986). The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology. *American Journal of Agricultural Economics* 68,4(1986):798–811.

Caswell, M.F. (1991). Irrigation Technology Adoption Decisions: Empirical Evidence. In: Dinar, A., Zilberman, D. (eds) *The Economics and Management of Water and Drainage in Agriculture*. Springer, Boston, MA.

Dinar, A., Campbell, M.B. & Zilberman, D. Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions. *Environmental and Resource Economics* **2**, 373–398 (1992).

Johannes Sauer (TUM) | Production and Resource Economics

Institutional Drivers

Outreach support and education programs

Caswell, Margriet, Erik Lichtenberg, and David Zilberman. The Effects of Pricing Policies on Water Conservation and Drainage. *American Journal of Agricultural Economics* 72, no. 4 (1990): 883–90.

Scheierling, S.M.; Young, R.A.; Cardon, G.E. Public subsidies for water-conserving irrigation investments: Hydrologic, agronomic, and economic assessment. *Water Resources Res*earch 2006, 42, W03428.

Dinar A, Karagiannis G, Tzouvelekas V (2007) Evaluating the impact of public and private agricultural extension on farms performance: A non-neutral stochastic frontier approach. *Agricultural Economics* 36:135–146.

3

ТЛП

Potential Barriers

Heterogeneity in the adoption of new water technologies can stem from:

Risk Preferences Actual/observed Risks Knowledge and Ability Access to Credit, Market Distance, Infrastructure Local/Regional Policy Discrepancies Technological Externalities and Learning Free-Riding Behavior

Empirical Measurement | Adoption | Ex Ante

Depending on specific research problem, dependent on setting and resources ...

- experiments: field or lab
- RCTs
- Stated Preferences Approaches (wtp | wta)
 - Choice Modelling
 - Contingent Valuation

The next columns describe different outcomes of the wetland management options.					
The following factors will vary under different management options	OPTION A (status quo- no change)	OPTION B	OPTION C		
Percentage of area having healthy vegetation	50%	60%	80%		
Number of Sarus cranes visiting the wetlands	150 birds	300 birds	450 birds		
Number of fish species	40 species	50 species	70 species		
Number of local households worse-off	0	900	900		
Once-off change in your current monthly electricity bill	No change	Increase VND 10,000	Increase VND 50,000		
If there were a vote (in which if the majority votes for the option you choose then the option will be selected), you would vote for:					
TICK ONE BOX ONLY Option A Option B Option C					

Scenario 1: Suppose options A, B and C are the ONLY ones available

Empirical Measurement | Adoption | Ex Post

Depending on specific research problem, dependent variable and nature of data ...

- discrete, continuous or limited dependent variable (adoption), e.g. number of adopters, share of adopters, speed of adoption etc.
- cross-section, panel, time-series data
- bias remedies: endogeneity, selection (un-/observable)
- sequential technologies, complementary technologies, bundles
- micro vs. macro focus (e.g. institutional framework, innovation system)

ТΠ

Empirical Measurement | Impact

Depending on specific research problem, outcome indicator and nature of data ...

identification strategy is key >

Balancing covariates between adopter farms and non-adopter farms before adoption through **Propensity Score Matching** to identify suitable treatment and control groups

Estimating the effect of adoption via **Difference-in-Difference** (control group: non-adopter farms)

Dynamic analysis at sector level: **Time-Series Autoregressive Distributed Lagged Model** (ARDL) after structural break test

Dynamic analysis at farm level: **Panel Regression** (Fixed Effects Model)

Statistical identification of dynamic drivers for impact at farm level: **Multinomial Regression**

Comparing changes of an aggregate outcome (e.g. yield/income per region) between an adopter region and non-adopter region **Synthetic Control Units/Groups (SCG)**

One can build synthetic control regions based on a donor pool of untreated units to establish causality; variables to form weights needed, typically on an aggregate level

Conclusion

1- While there are many promising approaches to conserve agricultural water and to make its use most effective, adoption rates are still too low ...

... policy intervention is needed to overcome the barriers.

2- Contribute toward improved agricultural water policies by estimating the magnitude of gains from the more effective use of water in agriculture ...

3- Effectiveness of these policies depends on the proper measurement of agricultural water efficiency and water's contribution to agricultural productivity

References

- Boyd, G. a., Tolley, G., & Pang, J. (2002). Plant level productivity, efficiency, and environmental performance of the container glass industry. Environmental and Resource Economics, 23, 29–43.
- Caswell, M., Lichtenberg, E., & Zilberman, D. (1990). The effects of pricing policies on water conservation and drainage. American Journal of Agricultural Economics, 72(4), 883–890.
- Caswell, M., & Zilberman, D. (1985). The choices of irrigation technologies in California. American Journal of Agricultural Economics, 67(2), 224–234.
- Hussain, I., & Hanjra, M. (2004). Irrigation and poverty alleviation: review of the empirical evidence. Irrigation and Drainage, 15(October 2003), 1–15.
- Perry, C., & Steduto, P. (2017). Does improved irrigation technology save water? (...)
- Postel, S., Polak, P., Gonzales, F., & Keller, J. (2001). Drip irrigation for small farmers: A new initiative to alleviate hunger and poverty. Water International, 26(1), 3–13.
- Rogers, E. M. (1995). Diffusion of innovations. In Macmillian Publishing Co. http://hollis.harvard.edu/?itemid=%7Clibrary/m/aleph%7C006256656
- Taylor, R., & Zilberman, D. (2017). Diffusion of drip irrigation: The case of California. Applied Economic Perspectives and Policy, 39(1), 16–40.
- Ward, F. A., Michelsen, A. M., & DeMouche, L. (2007). Barriers to water conservation in the Rio Grande Basin. JAWRA Journal of the American Water Resources Association, 43(1), 237–253.
 (...)

THANK YOU VERY MUCH

Prof. Dr. Johannes Sauer Production and Resource Economics TUM School of Management / TUM School of Life Sciences Technical University of Munich