Vegetable Meeting

Food Safety and Postharvest Handling of Vegetables UC, Santa Maria, Sept 2, 2011

Postharvest Handling Update for Vegetables:

- **1. General Considerations**
- 2. Broccoli Iceless Product and Varieties
- 3. Cutting vegetables for fresh-cut products

Marita Cantwell Dept. Plant Sciences, UC Davis micantwell@ucdavis.edu http://postharvest.ucdavis.edu

http://postharvest.ucdavis.edu

Produce Facts

- Harvest indices
- Quality indices
- Temperature and RH •
- Freezing point/damage
- **Respiration rates**
- Ethylene production •
- Effects of ethylene ٠
- Effects of modified atmospheres
- Physiological disorders
- Postharvest diseases
- Mechanical injury
- PHOTOS

140 Fruits Vegetables Flowers

Have some feedback, or want to ask a question? Link to our comment page.

Mission Statement

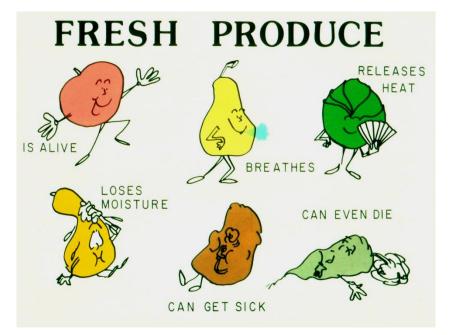
Reducing postharvest losses and improving the quality, safety and marketability of fresh horticultural products.

topics from the orchard site selection to produce distribution. It includes 153

10 Basic Postharvest Principles

- 1) Harvest at correct maturity
- 2) Reduce physical handling
- **3)** Protect product from sun
- 4) Keep packingline simple and clean; ensure good worker hygiene
- 5) Select, classify, and pack carefully
- 6) Align cartons, strap pallet
- 7) Cool as soon as possible
- 8) Know market and product requirements
- 9) Coordinate efficient & rapid handling
- 10)Train and compensate workers adequately

Causes of Quality & Postharvest Losses Leafy Vegetables

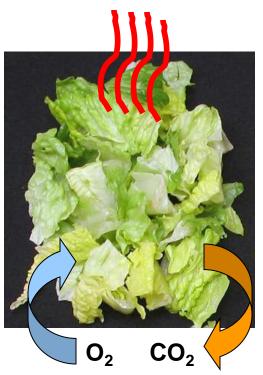

Lettuces Spinach Cabbage Chard **Broccoli** Celery Herbs Endives Asparagus

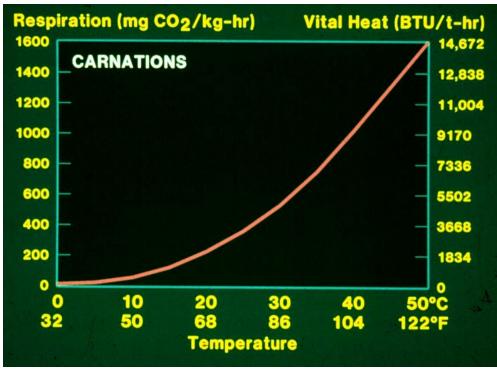
- Water loss
- Mechanical damage
- Loss of chlorophyll and other nutrients
- Respiration rates
- Microbial growth
- Sensitivity to ethylene

Almost all require low storage temperature

Fresh Produce Deterioration

- Metabolic changes:
 - respiration, ethylene,
 - texture, aroma, etc.
- Growth and development
- Transpiration
- Mechanical injury
- Physiological disorders
- Decay; microbial growth

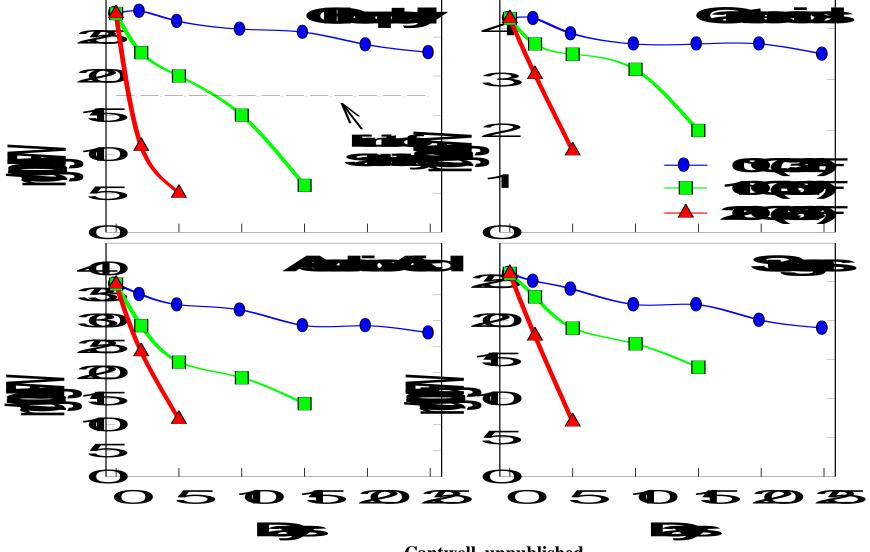

Temperature Affects All Causes of Deterioration


Temperature - why is it important?

- Rate of deterioration $\boldsymbol{\alpha}$ rate of respiration
- Respiration:

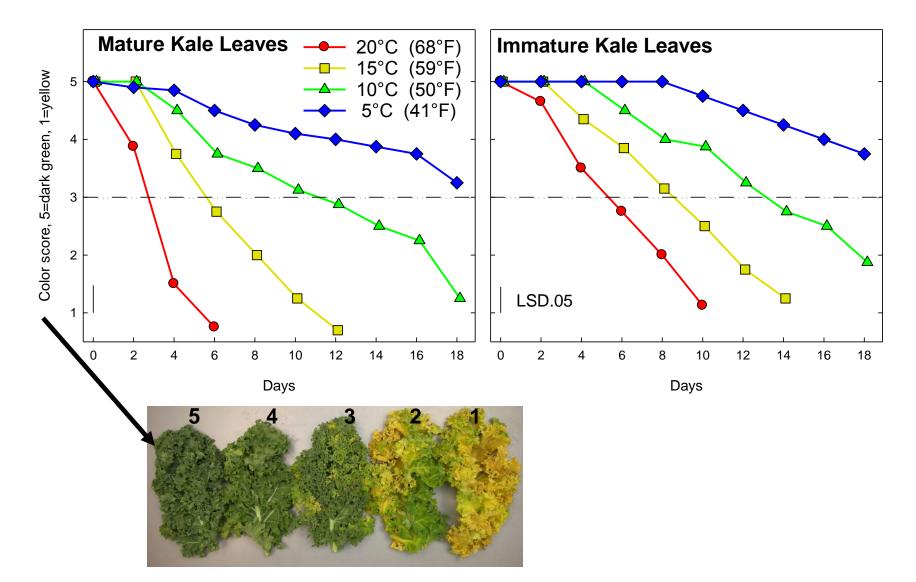
Sugar + $O_2 \longrightarrow \longrightarrow CO_2 + H_2O + Energy$ (Heat)

Respiration increases exponentially with T


Effect of Temperature on Deterioration

Temp. °F	Temp. °C	Q ₁₀	Relative Velocity of Deterioration	Relative Shelf-life	Daily Loss (%)
32	0		1.0	100	1
50	10	3.0	3.0	33	3
68	20	2.5	7.5	13	8
86	30	2.0	15.0	7	14
104	40	1.5	22.5	4	25

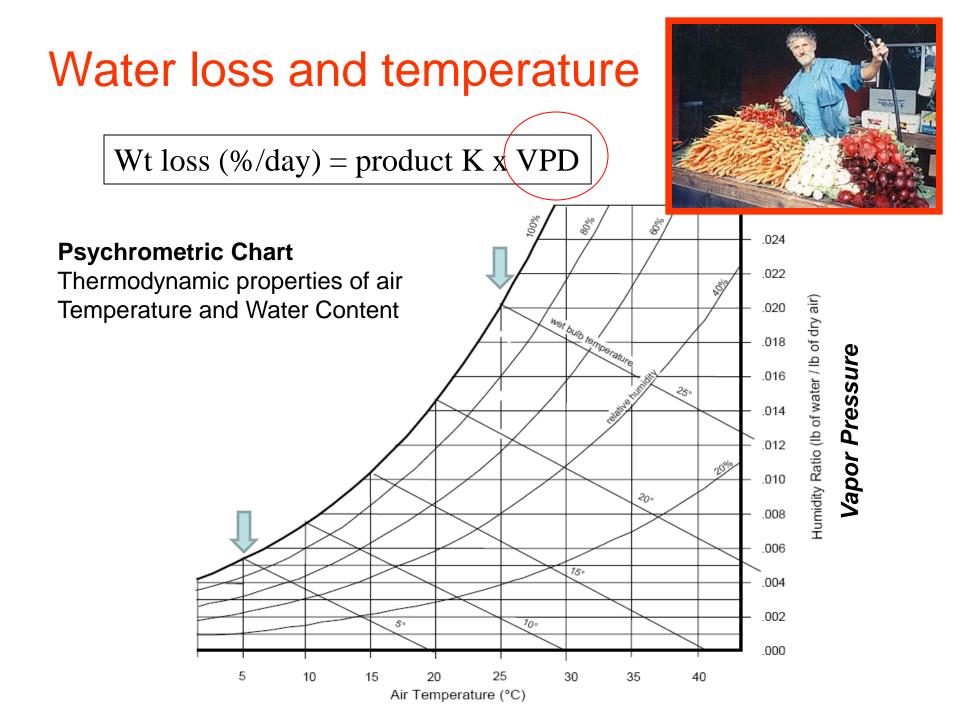
 $Q_{10} = \frac{rate \text{ of deterioration at } T+10^{\circ}}{rate \text{ of deterioration at } T}$


Note: Applies to most, but not all leafy & stem vegetables

Broccoli Compositional Quality and Storage Temperature

Cantwell, unpublished

Loss of green color by **mature** and **immature Kale** leaves stored at 4 temperatures for up to 18 days.


Transpiration (water loss)

<3% no visual effect, texture 3-5% visual quality affected >5% shrivel, lose salability

Loss of Salable Weight Loss Fresh Appearance Loss of Texture Water loss is Cumulative

Wt loss (%/day) = product K x VPD

Modified or Controlled Atm

- Reducing oxygen
- Increasing carbon dioxide
- Removing carbon dioxide
- Removing ethylene and other volatiles
- Degree of precision differentiates MA and CA

Composition of Normal Air

78.08%	Nitrogen (N ₂)
20.95%	Oxygen (O ₂)
0.93%	Argon (Ar)
0.03%	Carbon dioxide (CO_2)
0.0001%	Ethylene (C2H4) (1 ppm)

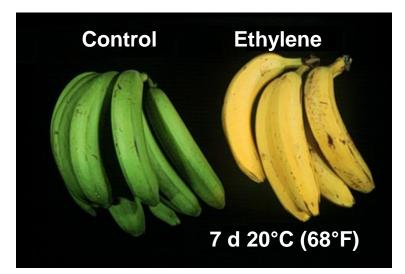
Temperature Management

- Insures best product quality
- Longest shelf life
- Reduces microbial growth
- Required for MA packaging

Modified Atmospheres

- Can be an important supplement to temperati
- Can retard deterioration
- Can retard discoloration in fresh-cuts
- Can retard microbial growth

Melon MA: Bag in box



MAP cut salad products

Ethylene - an important factor

Useful:

- Accelerates ripening
- Causes abscission
- Chlorophyll destruction
- Problematic:
 - Accelerates ripening
 - Causes abscission
 - Accelerates senescence

Manage Ethylene

1. Avoid

Products, forklifts, smoke

2. Remove

Ventilate, oxidize, absorb

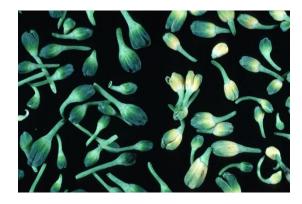
Incompatible products Low temperature Minimize exposure time

3. Inhibit production and action

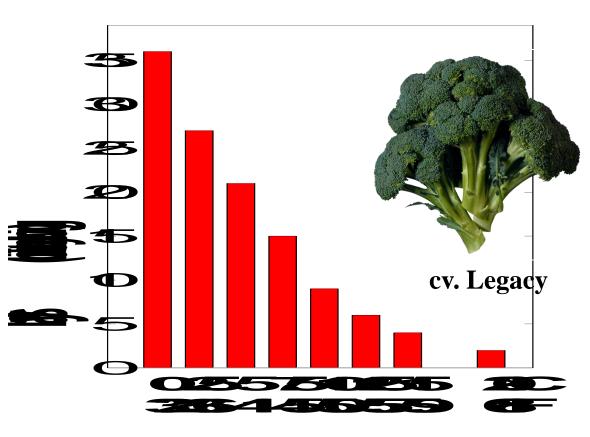
Low temperature, modified atmospheres, chemical inhibitors, molecular antisense technology

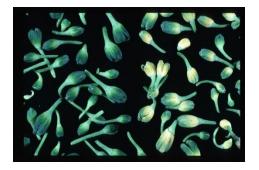
4. Germplasm selection/engineering

What is wrong with this picture?


Taken 2 days ago

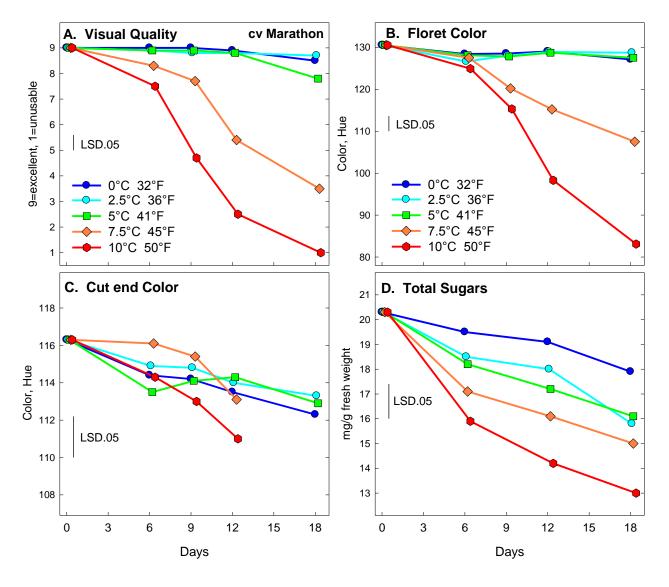
Mixed load: onions, watermelon, others?


Loading ripening tomatoes



- Fresh appearance
- Green florets
- Tender stem
- No discoloration
- No breakage or decay
- No off-odors

Γ



Broccoli Shelf-life & Temperature

Impact of Temperature on Broccoli Floret Quality

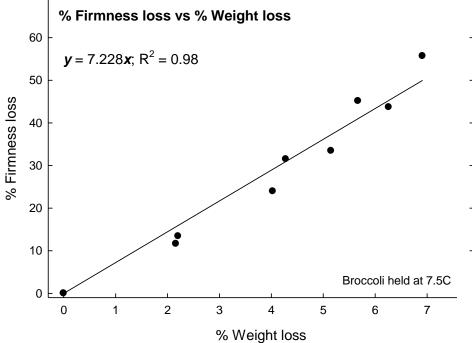
Cantwell, UC Davis

Broccoli Storage

- 0°C, high RH
- MA 5-8% O2 + 7-10% CO2

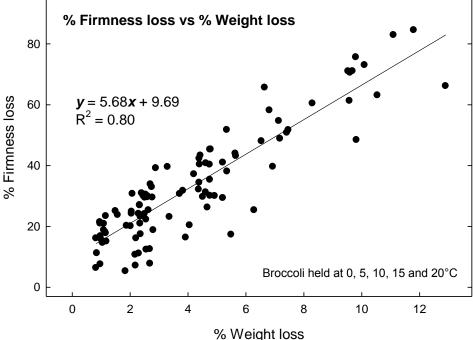
Iceless Broccoli

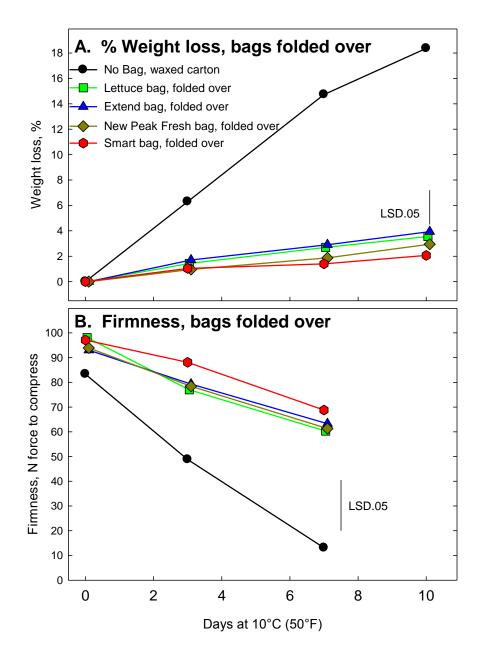
Temperature-yellowing Moisture loss-softening



ICELESS BROCCOLI

- Minimize delay from harvest to cooling
 - Use plastic linera to
- Use plastic liners to reduce water loss
- Keep product cold





Loss of Broccoli Head Firmness is Correlated to Water Loss

About 4% weight loss results in 30% decrease in firmness and this is likely the point at which a buyer would consider the head soft.

Broccoli weight loss and firmness loss can be minimized with plastic liners.

Simple perforated PE lettuce or basil liners perform as well as more expensive plastic films.

Cantwell, UC Davis, 2009

Broccoli Quality and Variety Evaluations

- Head Size, floret uniformity
- Floret/Head Color
- Head Firmness and Stem Texture
- Water loss and firmness loss
- Decay susceptibility
- Discoloration cut ends
- Shelf-life
- Composition
 - % dry weight
 - Sugars
 - Vitamin C
 - Pigments
 - Glucosinolates (glucoraphanin)
 - Antioxidant activity

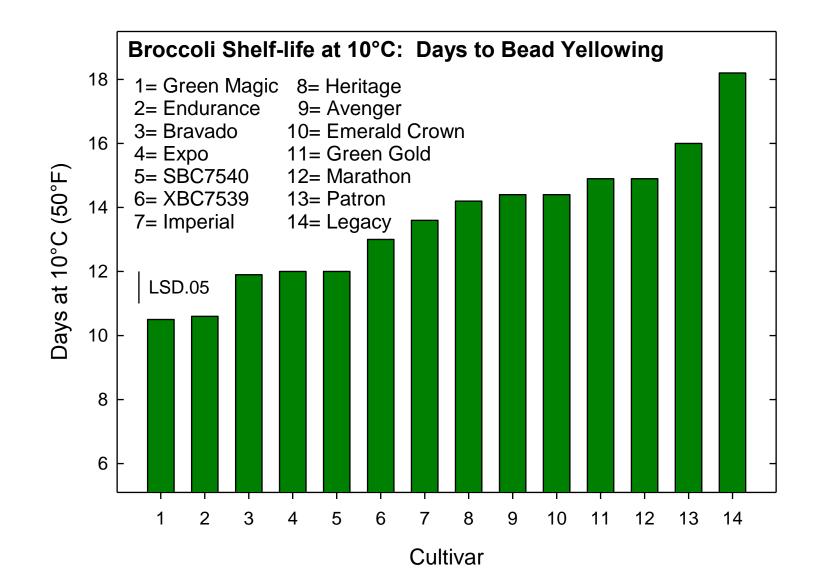
Broccoli Maturity has consequences for shelf-life

Inmature

Mature

Overmature

Cat-eye Hollow-stem Nitrogen fertilization

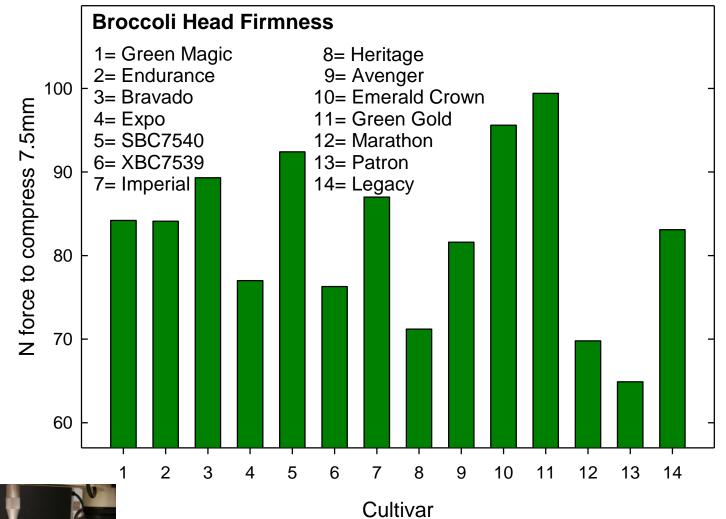


Shelf-life is number of days to reach score of 2

Broccoli Color Rating Scale and Corresponding Color Values and Pigment Concentrations.

Yellowing Score	L Color Value	Hue Color Value	Chroma Color Value	Total Chlorophyll mg/100g FW	Total Carotenoids mg/100g FW
1	42.0	135.0	11.0	34.1	7.3
2	43.3	127.5	15.9	28.2	6.4
3	45.9	125.4	16.9	24.4	5.8
4	47.1	123.3	17.7	17.5	5.5
5	49.8	115.3	21.8	16.5	5.0

Date average of 3 replicates at each color stage



Trial #2, 2010

Composition of Florets of Different Broccoli Cultivars

Cultivar	Dry Wt. %	Chlorophyll mg/100g FW	Sugar mg/g FW	Vitamin C mg/100g FW	Antioxidant Activity µmole TE/g FW	Glucoraphinin µmole/g DW
Heritage	11.9	19.5	12.5	147.1	52.5	8.3
Avenger	11.9	12.3	15.0	143.5	51.7	5.6
Marathon	11.8	12.8	11.9	159.3	63.9	3.7
Legacy	11.4	10.5	11.5	150.3	71.8	2.9
Green Magic	11.8	16.1	8.8	166.2	72.0	5.7
Patron	11.6	15.1	10.0	147.6	66.2	4.2
Ironman	12.0	14.6	13.3	151.3	56.2	4.4
Bravado	12.8	13.6	11.1	153.4	51.8	5.3
Emerald Crown	12.1	13.3	10.6	153.2	39.5	3.4
Imperial	11.1	15.4	14.8	139.2	35.0	6.2
Expo	11.8	12.1	26.6	140.8	46.1	4.0
FBC9423	12.0	13.4	17.6	151.6	36.8	4.1
Average	11.8	14.1	13.6	150.3	53.6	4.8
LSD.05	0.3	0.3	4.2	7.6	5.4	1.6

Trial #1, 2010

Initial head firmness, no water loss, Trial #2, 2010

Legacy

Marathon

Heritage

Patron

Firmness and Water Loss of Crowns of Broccoli Cultivars

Cultivar	Crown weight, g	Initial Firmness N	% weight loss 20h 15C 70%RH	Final Firmness N	% firmness loss
1	215.5	52.8	5.27	33.0	38.3
2	198.9	63.5	5.24	38.7	39.3
3	200.3	60.0	3.62	48.2	20.6
4	187.5	63.8	3.73	49.2	24.7
5	195.8	58.1	3.66	45.3	21.6
6	181.5	75.6	3.57	62.4	17.9
7	197.2	96.6	3.73	87.0	9.9
8	222.7	113.3	4.80	82.7	28.0
9	227.5	71.5	5.30	53.3	23.9
Average	203.0	72.8	4.32	55.5	24.9
LSD.05	ns	17.2	0.79	16.3	10.8

Trial #1, 2010

Broccoli Research Update

- Broccoli cultivars differ substantially in shelf-life and composition
- Head firmness is related to morphology and water loss
- Cultivars differ in head firmness and rate of water loss
- Iceless broccoli requires
 - Rapid cooling after harvest
 - Protective plastic liners or packaging
 - Excellent temperature control

Retard yellowing Minimize weight loss

Postharvest Evaluations Broccoli Varieties

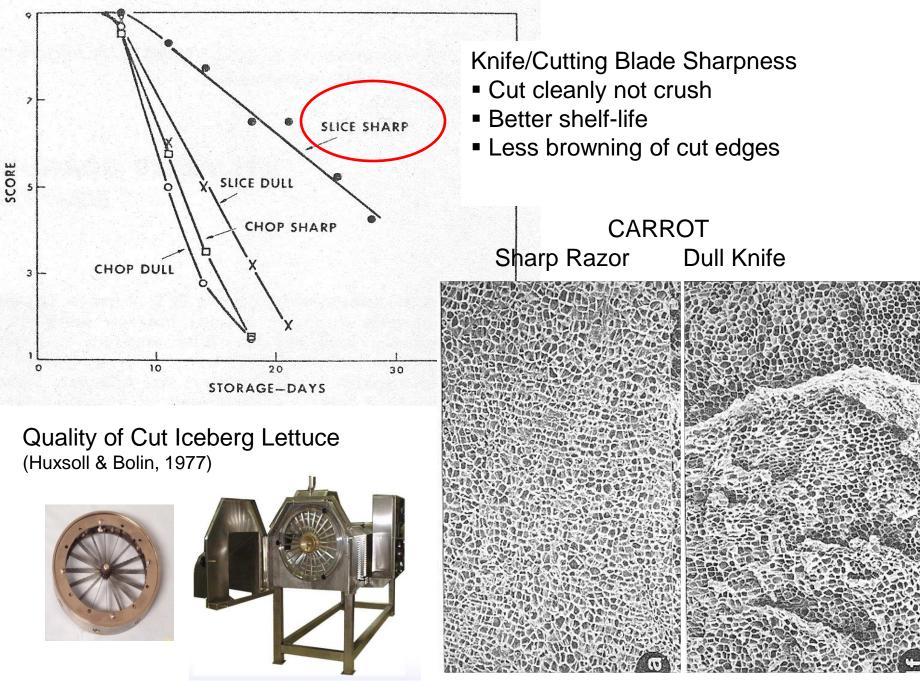
- Bead and floret yellowing
- Stem toughening
- Stem and cut end discoloration
 Fresh-cut products
- Floret and head morphology
 - Uniform color for fresh-cut
 - Minimal loss of beads
- Rate of water loss (for iceless product)
- Head rot susceptibility

Water-jet Cutting Project

- Third party assessment of performance
- 6 products for fresh-cut
 - romaine, iceberg, celery, cabbage, broccoli, apple
- 2 types of orifices (sharp, fuzzy)
- 3 pressures (35, 45, 55K PSI)
- 3 traverse speeds
- Cut surface appearance
- Shelf-life and quality commercially cut product and waterjet cut products

Lettuce Salad Preparation A 'mature' fresh-cut product Standardized operations

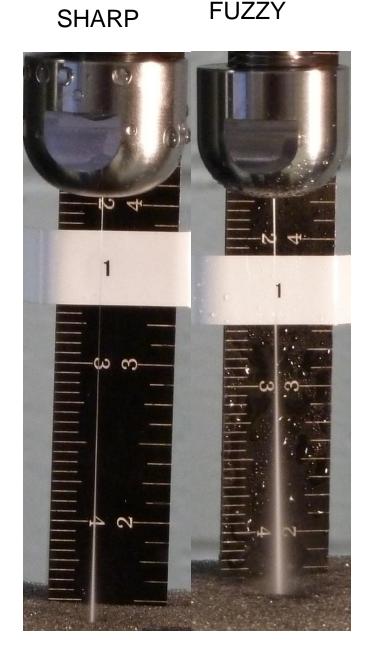
- Harvest
- Trim, core, defect removal
- Cool and/or MA
- Dump, mechanical cut
- Cooling, disinfection
- Drying, centrifugation
- Component blending
- Weigh and package
- Metal detector, pack, palletize
- Temporary cold storage



Maintain Quality & Safety of Fresh-cut Vegetable Products

- 1 Maintain Use highest quality raw material
- 2 Minimize mechanical damage; sharp knives
- 3 Rinse cut surfaces; remove excess water
- 4 Maintain strict sanitation; chlorinated water
- 5 Use appropriate package and atmosphere
- 6 product temperature at 1-2°C

Scanning electron microscopy, Tatsumi & Watada, 1991


Knife sharpness, replacement Need for metal detector

Waterjet cutting

- Used in processing fish and meat
- Cutting romaine heads in the field
- Fresh-cut celery
- Cutting parameters and cutting costs depend mainly on material to cut
- Multitude of different parameters influencing the cutting power of high-pressure water jet

Video of cutting romaine lettuce http://www.kmtwaterjet.com/food.aspx

Cutting Parameters of a Water-jet System

Hydraulic parameters	Mixing and acceleration parameters	Cutting parameters
Pump pressure	Focus diameter	Traverse velocity
Water orifice diameter	Focus length	Standoff distance
Water flow rate		Impact angle

Sharp vs Dull knife; 3 days air 5°C

- Sharp vs dull effect on product quality
- Guidelines for knife sharpness vary
- Dangerous and costly to replace/maintain
- Packaged products through metal detector as CCP because of potential for metal shavings

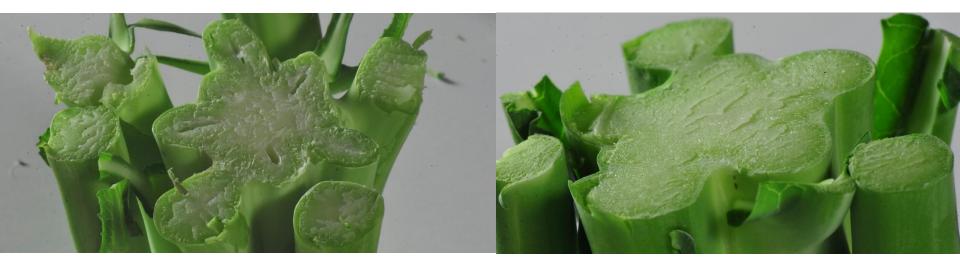
Water jet cutting of romaine lettuce

http://www.ramsayhighlander.com/products/romaine/green-leaf-lettuce-harvester.htm

Best WJ

Dull Knife

Sharp Knife


Romaine April 16, 2011; 4 days 5°C; 7, 12, dull, sharp

Best WJ

Worst WJ

Dull Knife

Sharp Knife

Broccoli, 2days 5°C; 7 (55, slow, sharp); 12(35, fast, fuzzy)