

Fertility management in organic strawberries

Organic P management :

> P in composted manure is at least 70% as available as synthetic P fertilizer

- Using composted manure for N availability often results in excess P
 - 5 dry tons/acre of poultry manure compost with 2% P = 200 lb P / acre
 ≈ the equivalent of 325 lb of chemical P₂O₅ / acre
 - ≈ 8 times the seasonal crop uptake

Organically managed soils can be an environmental threat :

2002-04 laboratory study of coastal soils

How much N does a strawberry crop need, and when does it need it ?

Salinas area organic strawberries, 4 year ave., 38,000 lb marketable fruit/acre data from J. Muramoto

In organic production plant-available N comes from :

- ✓ Soil organic matter
- Cover crops or other crop residue
- Compost
- Organic fertilizers

Soil organic matter :

Each 1% O.M. = 20,000 lb/acre in 6" of soil ≈ about 12,000 lb C ≈ about 1,300 lb organic N

During the growth season (March - August) at least 2 - 4 % of organic N should mineralize (become plant-available)

Example: soil with 1.5% organic matter ≈ 2,000 lb organic N in top 6 inches if 2% mineralized = 40 lb N/acre from soil organic matter

Cover crops :

 If residue > 3% N : 30 - 70% of N mineralized
 If residue < 2.5 % N : ???

Composts and manures :

- Nitrogen mineralization rates vary based on N content
 - higher % N or lower C:N ratio increases N mineralization rate

Mean of 4 materials of each type, all poultry-based % N = 2.5 - 3.5% , C/N ratio = 7 - 10

Organic fertilizers :

High N waste products have rapid mineralization

Materials 11 - 16% N, C:N ratio < 4

Incubation at 68 °F in coastal organic field soil

How do preplant inputs match up with crop need ?

Hypothetical field : soil with 1.5% organic matter Preplant input (per acre) :

- 6 tons of poultry manure compost
- 500 lb feather meal

Fundamental problem:

How to keep available N in the root zone until crop uptake ?

N can be lost through :

- Denitrification loss is small unless soil is poorly drained clay
- Leaching from rain can be significant even with plastic mulch
- Leaching from irrigation often a major issue

2005-06 Watsonville organic strawberry trial :

Soil inorganic N (lb/acre)	Crop N uptake (Ib/acre)	Apparent N loss (lb/acre)
160		
125		35
35	5	85
15	15	10
	Soil inorganic N (lb/acre) 160 125 35 15	Soil inorganic N (lb/acre)Crop N uptake (lb/acre)1601253551515

Bottom line : Loss of > 100 lb available N / acre between planting and the beginning of rapid plant growth

Data from Muramoto et al.

Keys to efficient irrigation :

Tie irrigation volume to environmental demand use ET_o and crop coefficients

Adjust irrigation frequency to limit leaching

Limit individual irrigations: < 0.5 inches for sandy soil < 0.75 inches for clay soil

In-season N fertilization may be necessary :

Issues:

- N availability
- Cost
- Compatibility with drip system

Liquid organic fertilizers :

Product A :

Produce B :

Guaranteed Analysis 6-2-0.5

Total Nitrogen(N)
4.0% Water Soluble Organic Nitrogen
2.0% Water Insoluble Organic Nitrogen
Available Phosphoric Acid (P ₂ O ₅)2.0%
Soluble Potash (K ₂ O)0.5%

Derived from feather meal and seabird guano.

GUARANTEED ANALYSIS

PRIMARY PLANT FOOD INGREDIENTS:

Enzymotically digested meal from ocean going fish. Stabilized with sulfuric acid.

N availability from high-N liquid fertilizers : > mineral N fraction immediately available > about 50% of organic N available within 2 weeks

Planning N injections :

match crop N uptake

From March through summer, crop N uptake ≈ 3 - 4 lb N / acre / week

Planning N injections :

Soil NO₃-N 'quick test'

Procedure available at http://vric.ucdavis.edu/veginfo/topics/fertilizer/nitmanagement.pdf

Planning N injections :

> plant tissue analysis ?

In summary :

- Limit high-P composted manure use to prevent soil P buildup
- Protect available soil N from loss with irrigation
- In-season application of injectable N fertilizers may be necessary, but requirements should be modest and predictable