

NUTRITIONAL DESCRIPTION OF PITAHAYA (DRAGON FRUIT)

DRAGON FRUIT / PITAHAYA SEMINAR
UC SOUTH COAST RESEARCH AND EXTENSION CENTER

www.agq.com.es

for a better and safer world

www.agq.com.es

Research project

Nutrient removal by Pitahaya fruits

Nutrient content in Plant tissue analysis

Establish a fertilization program

ECOLOGY AND PHYSIOLOGY

- Pitahaya, (*Hylocerus* spp.) or dragon fruit is a species of epiphytic Cactaceae.
- Original from Central & South America.

Tropical & subtropical climates, but also arid and semiarid conditions

(those found in southern California).

Resistant to water stress/drought.

 Optimum elevation between 3000 to 4500 feet above sea level.

Temperature 65 to 80 F (will tolerate above 100 F).

• Rainfall 20-50" per year.

Hylocereus undatus

www.agq.com.es

SOIL REQUIREMENTS

Free draining, Sandy-Clay-Loam types

Cactae: tolerant to harsh dry conditions for a limited time (affects plant activity, yield), and sensitive to water logging

• pH: between 5.3 - 6.7

Nutrient availability. Hard to find these conditions in California.

Acid management might be required

High Organic Matter content (over 3%)

High CEC, High N mineralization, Moisture holding capacity

There are no more specified requirements in previous experiences

Plant Origin: South and Central America (tropical, organic, acid, wet soils)

JUSTIFICATION AND OBJECTIVES OF THE STUDY

- Hylocereus spp. shows high potential as an ornamental and fruit crop.
- Increasing demand in the national and international markets.
- Natural high resistance to draught and low water consumption compared to traditional crops (such as avocados).
- There are no studies that have evaluated the needs & requirements of Pitahaya in terms of macro- and micronutrients.
- There is no data for the Pitahaya in southern California establishing values of the different essential elements.

MATERIAL AND METHODS. Varieties

- American Beauty (Hylocereus guatemalensis). Guatemala. Fuscia color pulp.
- Lisa (*Hylocereus polyrhizus/costaricensis*). Nicaragua and Costa Rica. Red color pulp.
- Physical Graffiti (Hylocereus sp.). California. Neon pink color pulp.
- Vietnamese Giant/Mexicana (*Hylocereus undatus*). Florida, California & SE Asia. White color pulp.
- El Grullo (*Hylocereus ocamponis*). NW of Mexico. Red blood color pulp.
- Delight (*Hylocereus polyrhizus X undatus*). California. Light pink color.

www.agq.com.es

MATERIAL AND METHODS

- Plant tissue analysis (fully matured growth, 2" section)
 - Fruit analysis (whole fruit, flesh + skin)

for a better and safer world

68

12

20

SOIL ANALYSIS AND AMENDMENTS

environment ● food ● industry ● mining

www.agq.com.es

RESULTS

Overall good soil quality
Sandy loam
Slightly high pH
Medium fertility
Good Ca/Mg/K balance

Granulometry	
Sand (%)	
Silt (%)	
Clay (%)	

Chemical properties	
рН	7.60
Organic Matter (%)	1.95
Nitrogen (mg/kg)	1052.90
Active Lime (% CaCO3)	0.48
E.C. _μ S/cm	332.00
P (mg/kg)	24.80

Available bases	
Ca (meq/100g)	14.86
Mg (meq/100g)	5.01
K (meq/100g)	0.98
Na (meq/100g)	1.30

Micronutrients	
B (mg/kg)	0.66
Fe (mg/kg)	7.22
Mn (mg/kg)	7.52
Copper (mg/kg)	1.56
Zinc (mg/kg)	6.13

Tested	bv A	GO	Labs
Testeu	БУЛ	JU	Labs

C/N Ratio 11

Measures of interest

environment ● food ● industry ● mining

WATER ANALYSIS

www.agq.com.es

RESULTS

High pH and Salt content

High Sodium

No Boron toxicity

Tested by AGQ Labs

No micronutrients present

Chemical properties

рН	7.5
E.C. μS/cm	1084

Anions (mg/l)

Alkalinity	203.15
Chlorides	69.34
Nitrates	27.39
Sulphates	186.70

Cations (mg/l)

Calcium	70.42
Magnesium	24.19
Potassium	13.34
Sodium	156.08

Micronutrients (ma/l)

, , , , , , , , , , , , , , , , , , , ,	
Boron	0.33
Iron	0.00
Manganese	0.01
Copper	0.01
Zinc	0.03

Measures of interest

Total Dissolved Solids 750.60

www.agq.com.es

NUTRIENT MANAGEMENT

• ESSENTIAL MINERAL ELEMENTS: in its absence the plant is unable to complete a normal life cycle and that the element is part of some essential plant constituent or metabolite

Primary Macronutrients: N, P, K

Secondary Macronutrients: Ca, Mg, S

Micronutrients: B, Fe, Mn, Cu, Zn, Mo

Others in study: Si, Na, Cl, Ni...

• LIEBIG'S LAW OF THE MINIMUM

Plant tissue samples Primary Macronutrients

www.agq.com.es

Plant tissue samples Secondary Macronutrients

Plant tissue samples Micronutrients

www.agq.com.es

Plant tissue samples

Nutrient removal (lbs/acre) by aerial growth biomass

Based on UCCE estimations for Physical graffity

-Spacing 10' x 6'; UCCE Irvine field plot 726 plants/acre

-Pruning 200 lbs/plant-year; 145,200 lbs/acre

N	P2O5	K20
138	46	461

-Intensive 10' x 3'; Fillmore field plot 1452 plants/acre

-Pruning 200 lbs/plant; 290,400 lbs/acre

N	P205	K20
276	92	922

Incorporate prunnings;

plant health issue??

www.agq.com.es

Fruit samples (skin+flesh) Primary Macronutrients

www.agq.com.es

Fruit samples (skin+flesh) Secondary Macronutrients

www.agq.com.es

Fruit samples (skin+flesh) Micronutrients

www.agq.com.es

Fruit samples (skin+flesh)

Nutrient removal (lbs/acre) by fruit

Based on UCCE estimations for Physical graffity

-Spacing 10' x 6'; UCCE Irvine field plot 726 plants/acr -Conservative 20 lbs/plant; 14,520 lbs/acre -Potential 50 lbs/plant; 36,300 lbs/acre

N	P2O5	K20
29	8	57
73	20	142

-Intensive 10' x 3'; Fillmore field plot 1452 plants/acr -Conservative 20 lbs/plant; 29,040 lbs/acre -Potential 50 lbs/plant; 72,600 lbs/acre

N	P2O5	K20
58	16	113
145.2	40	284

www.agq.com.es

JOSE A. GOMEZ, M. Sc., CCA

805.816.4578 jagomez@agq.com.es

FELIX ZORITA, Ph.D.

