Growing Hops in Southern California – UCCE

Economics – Feasibility – Botany – Cultural Practices – Pest Control – Harvest

June 21-22

Paul Vossen
UC Cooperative Extension

Humulus spp. Overview

- Family: Cannabaceae
 - Cannabis
 - C. sativa
 - Humulus
 - H. japonicus
 - H. yunnanensis
 - H. lupulus

Hop Basics (Humulus lupulus)

- Climbing perennial (bine) with storage roots
- Dies back winter regrows from crown in spring
- Growth and flowering influenced by daylength
- Male & female flowers on separate plants
- Only female plants grown (males rogued out)
- Seeds are "undesirable" add weight
- Plant flourishes with good nutrition & water
- Susceptible to many diseases and insects
- Flowers "cones" with many scales in clusters
- Lupulin: yellow granular oily resin = flavor
- Resin acids: Alpha & Beta = bitterness
- Oils: volatile aromatics

Long Lived Perennial

Numerous Bines Climbing

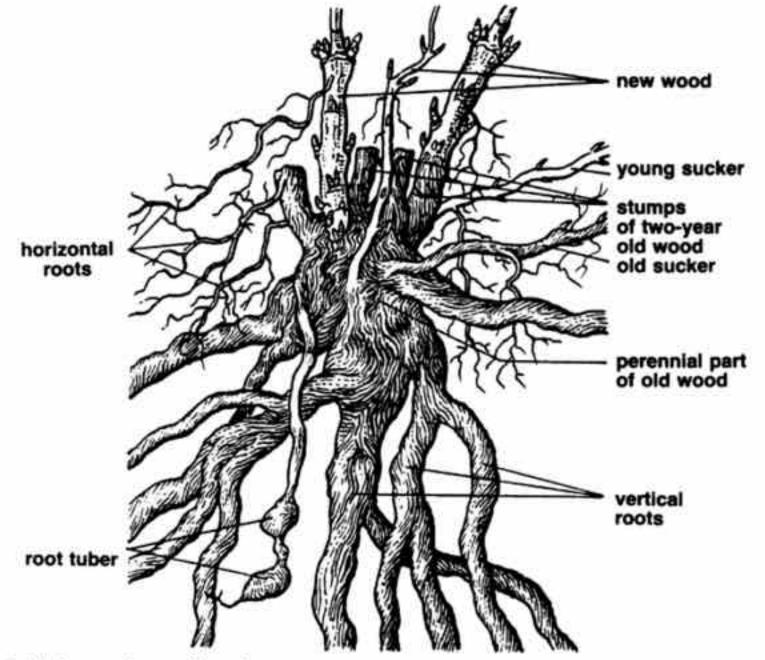


Fig. 2. Underground part of hop plant.

Humulus lupulus

- "Hops"
- Dioecious, perennial, climbing vine
- Indigenous to the Northern Hemisphere
 - Origins in Europe:

H. lupulus var. lupulus

Origins in Asia (mainly Japan):

H. lupulus var. cordifolius

Origins in North America:

H. lupulus var. pubescens

H. lupulus var. neomexicanus

H. lupulus var. lupuloides

Dioecious Plants

- Separate male and female plants
- Commercial value derived from the strobiles or "cones" of the female plant
- Male plants utilized only for hybridization
- Pollination results in:
 - Unwanted seeds
 - Increased cone size

Male Flowers

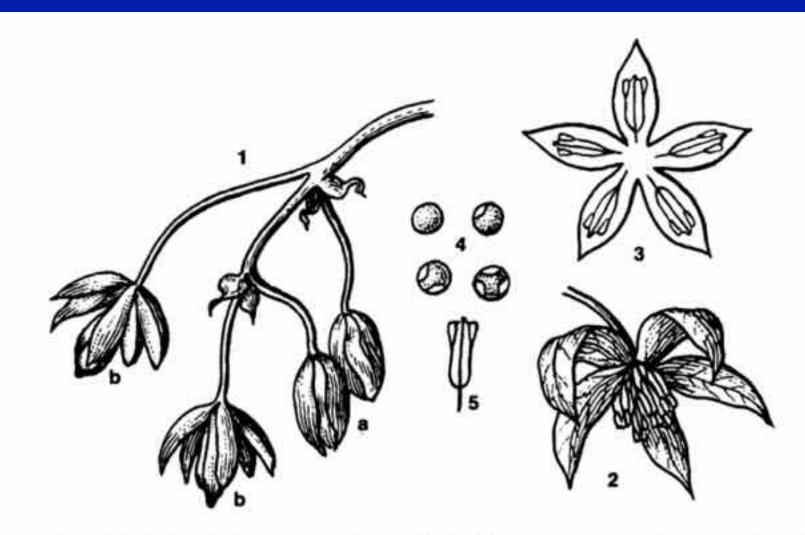
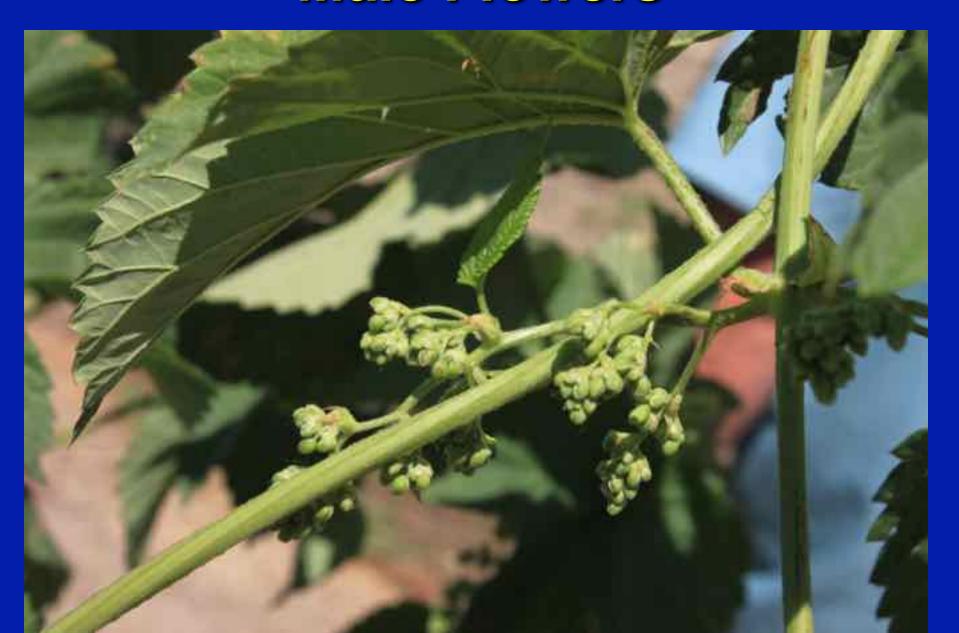
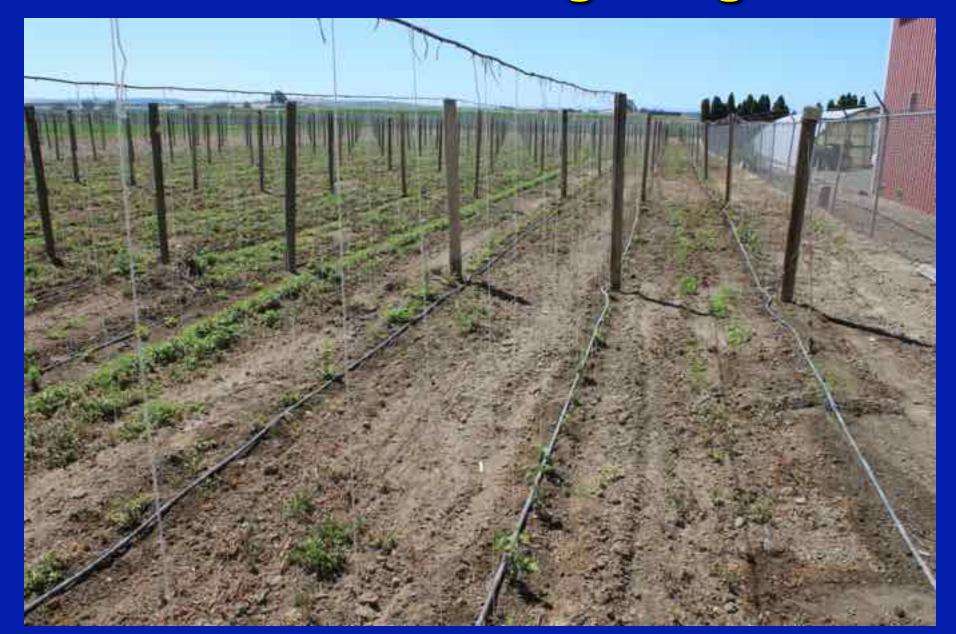




Fig. 20. Male inflorescence (1) with buds (a) and flowers (b), open flower (2) and flower diagram (3), pollen grains (4), anther (5).

Male Flowers

Perrault Breeding Program

New Variety Evaluation

The "Cones"

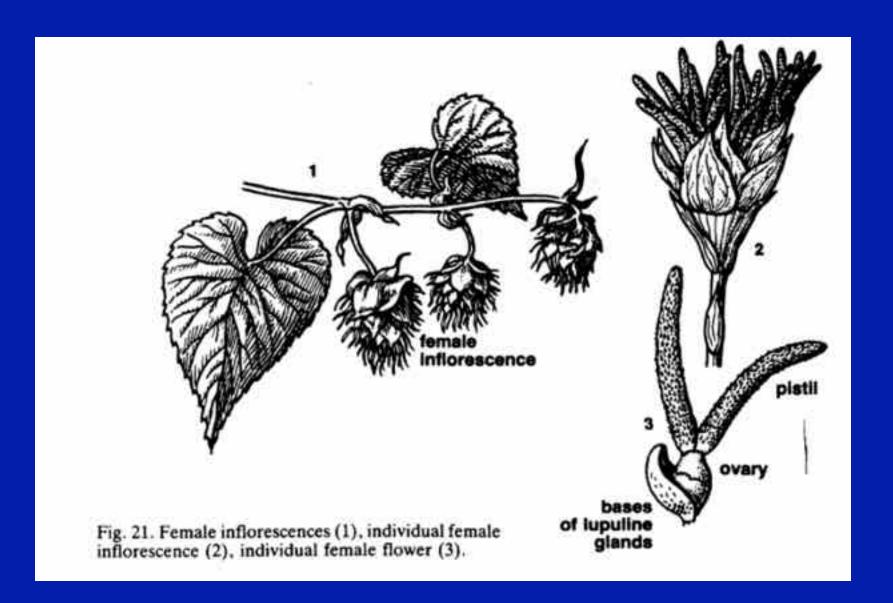
- These are the manufacturing unit of the commercial hop plant.
 - The cones contain lupulin glands (actually modified vine hairs).
 - These glands contain the chemistry we are after:
 Essential oils: over 300 compounds, contribution to aroma.
 Soft resins: beta acids, and the all important alpha acids.
 - Lupulin accounts for 20 30 % of cone weight.

Photoperiod Sensitive

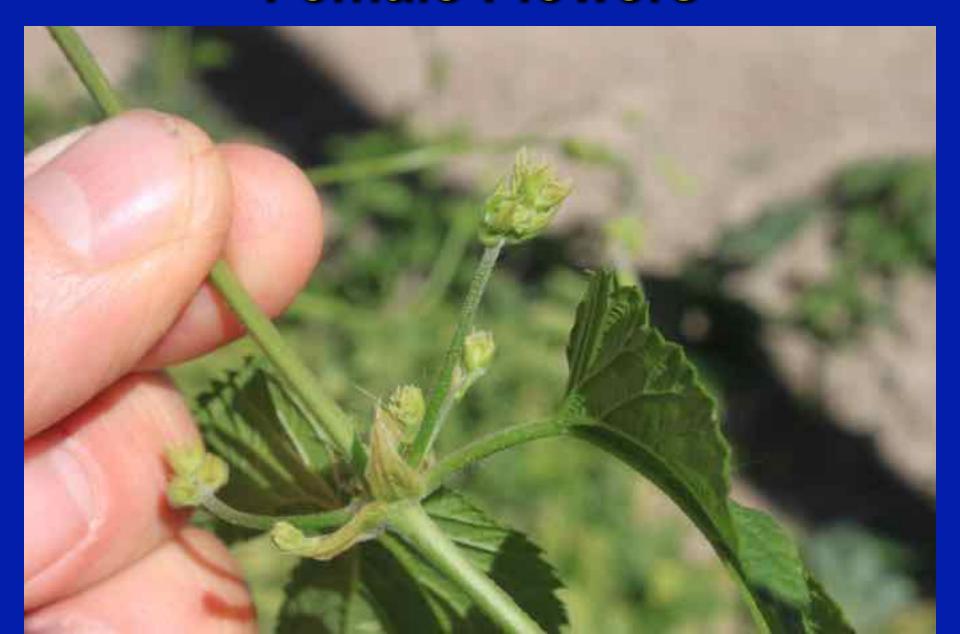
- Hops are a short day plant.
 - Under a critical number of light hours floral initiation.

Also node dependant.

- Over the critical amount, vegetative growth.
- In shorter day areas, flowering occurs as soon as the node requirement in met-yield not maximized.
- In longer day areas-vegetative growth is maximized prior to shortening days of mid to late summer.
- Results in defined "Production Stages"


Jason Perrault

Reaches the top laterals form Flowering starts



Female Flowers

Female Flowers

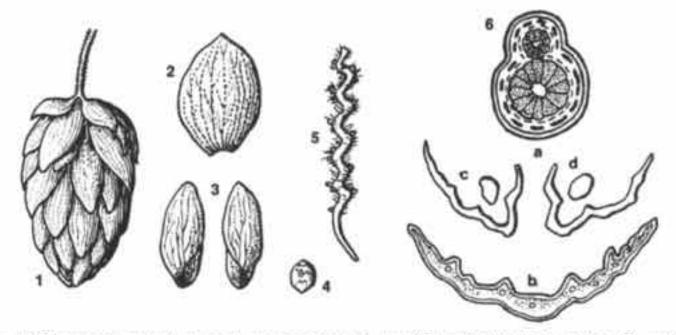


Fig. 23. Cone and its parts: 1-cone. 2-covering bract, 3-true (involucral) bracts, 4-achene, 5-cranked axis, 6-cross section of a cone | a - cranked axis, b - covering bract, c - true (involucral) bracts, d-achenes.

TABLE 14 Percentage of components in dry matter of hop cones

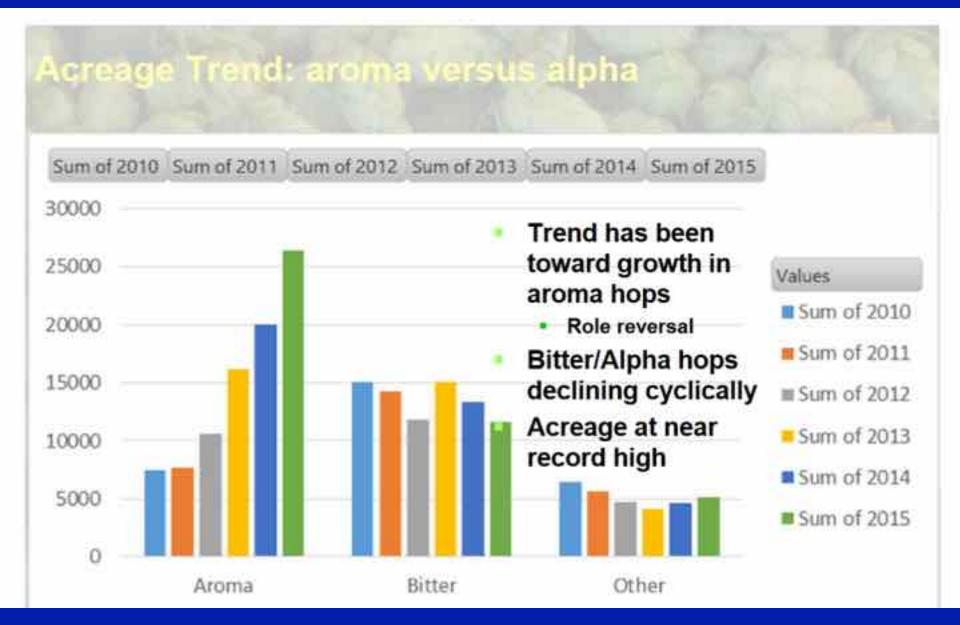
Component	Percentage of total				
	Wildner (1938)			Bulgakov	Rybáček
	min.	max.	average	(1954)	(1963)
Rachis	5.20	5.90	5.60	5.98	4.40
Axis Bracteoles and	6.10	7.30	6.70	6.36	6.68
bracts	66.90	69.40	68.20	66.85	69.31
Lupuline glands Total	19.20	19.80	19.50 100.00	19.81 100.00	19.61 100.00

Developmental Physiology of the Hop Plant (or Production Stages)

- The hop plant goes through numerous stages of growth throughout the year.
 - Each stage has its own unique characteristics.
 - Therefore each stage of growth requires its own

unique management scheme.

- Main Stages of Growth
 - Dormancy
 - Spring regrowth
 - Vegetative Growth
 - Reproductive Growth
 - Preparation for Dormancy

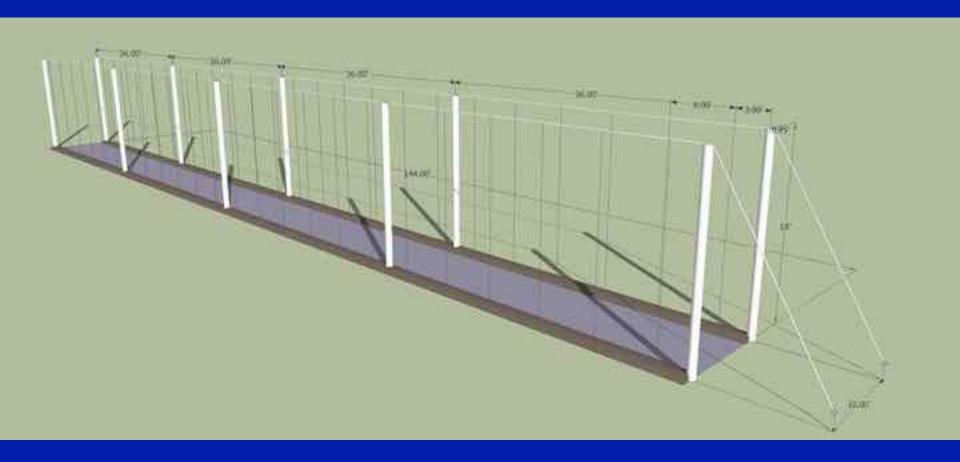


Hop Varieties

Jason Perrault
Select
Botanicals

Brewers

Aromatic Variablity


— HBC 430 — HBC 472 — HBC 291 — HBC 366 — HBC 344

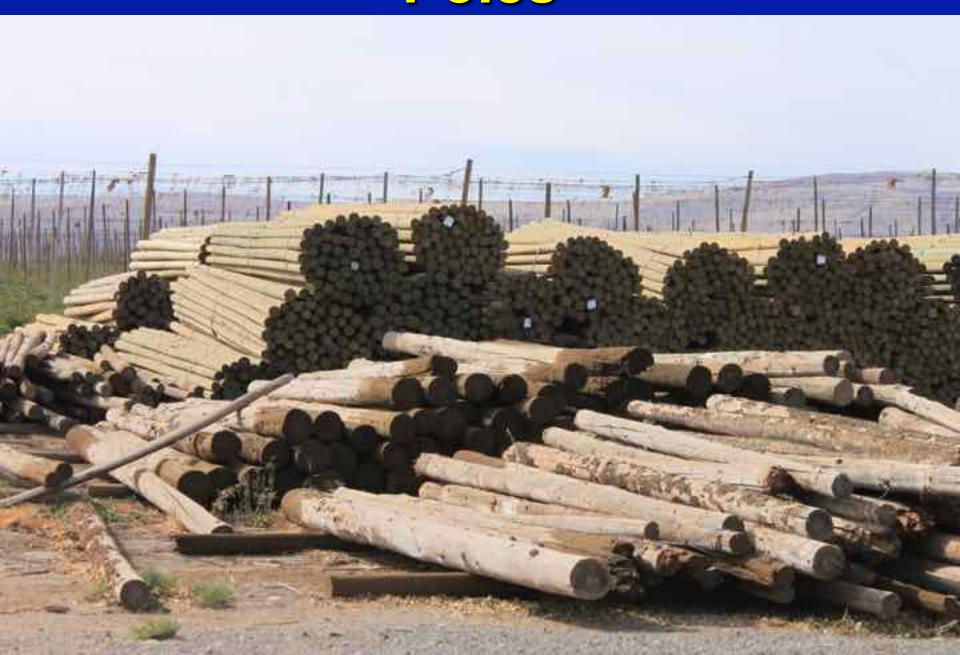
Jason Perrault

Land Preparation

Hop Trellis ~ \$3,000

2010 Yakima WA Cost Study (per acre)

- •60 poles + 10 anchor poles (12' x 28')
- ·Holes, anchor material, cable, wire, staples


Poles, cables, wires, dead-men

Poles

Poles soaked in preservative

Poles, cables, wires, twine

Tall carts

Cables, twine, hopclip

Growing hops

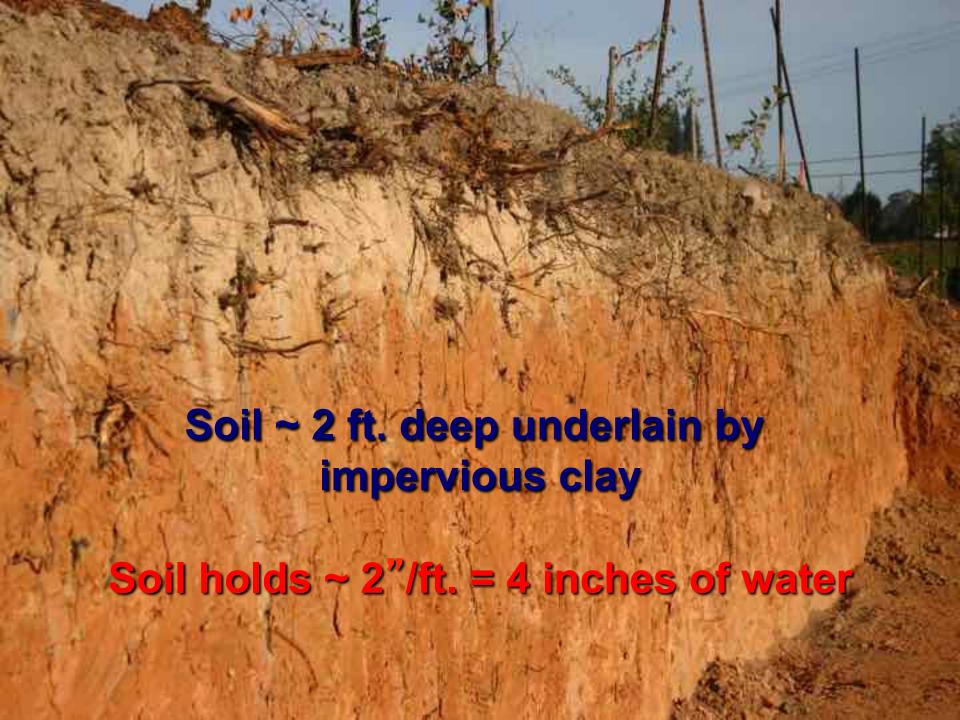
- Site: full sun & well drained soil
- Spacing 2-5' in row 7-14' between rows
- Yakima: 3.5' x 12' = 1,037 crowns/acre
- Plant ~ 4,000 roots/acre (3-4 per hill)
- 22' Poles: 60-130/acre + 10 anchor poles (12' x28')
- Buried 3-4 ft. with DM anchors (+ cement)
- Drip irrigation system (~ \$1,500/acre)
- Prune crown in late winter/early spring
- Train 2 vines/string 4-6 per crown
- 50% yield year 1 80% year 2 100% year 3
- Fresh yield: $65-80\% H_20 \sim 4-6,000 lbs/acre$

Training vines onto twine **WSU Cost Study 2010** 4,000 roots @ \$0.20 each \$800/acre

Training vines onto twine

Training vines onto twine

Training vines onto twine


Minimal Weed Competition

Hop Irrigation

- Ideal: base on Evapotranspiration (ET)
 - Drip irrigate every day from May to harvest
 - Increase or decrease hours/day based on temp.
- General: 20-30"/season (minus soil H₂O)
 - Loam holds 2"/ft. rooting depth
 - -20-30" = 543,000 to 814,000 gallons/season
 - Hops tolerate drought, but stress | production
- Critical Times: spring growth & flowering

SONOMA COUNTY climatic zones coastal cool coastal warm

Marine
Coastal Cool
Coastal Warm

Seasonal Water Requirement

April - October (30 yr. average in inches) (Sonoma County)

	<u>Marine</u>	Coastal Cool	Coastal Warm
April	2.8	4.0	4.5
May	2.9	5.8	6.9
June	2.8	5.6	7.0
July	3.4	6.1	7.9
August	3.1	5.2	6.8
Sept.	3.1	4.4	5.7
Oct.	<u>3.1</u>	<u>3.3</u>	<u>3.7</u>
TOTAL	21.2	34.4	42.5

Plant - USE RATE How Much Water Plants Use Evapo - Transpiration (ET)

- Evaporation from soil surface = 10%
- Transpiration = 90% cooling of the leaves

Hop Irrigation (Santa Rosa ET)								
			May	June	July	August	Sept.	Oct.
		ETo inches/day	0.17	0.20	0.20	0.19	0.14	0.10
		ETc	0.40	0.45	0.45	0.44	0.44	0.00

0.15

gallons

per plant/

day

8.0

0.9

2.4

3.8

4,139

0.14

gallons

per plant/

day

0.7

8.0

2.2

3.5

3,784

0.11

gallons

per plant/

day

0.5

0.6

1.7

2.7

2,885

0.08

gallons

per plant/

day

0.4

0.4

1.2

2.0

2,037

0.15

gallons

per plant/

day

8.0

0.9

2.4

3.8

4,168

0.13

gallons

per plant/

day

0.6

0.7

2.0

3.2

3,456

inches/day

Plant

age

new

young

mature

mature

1 acre

solid cover

ft²

4 ft²

9 ft²

25 ft²

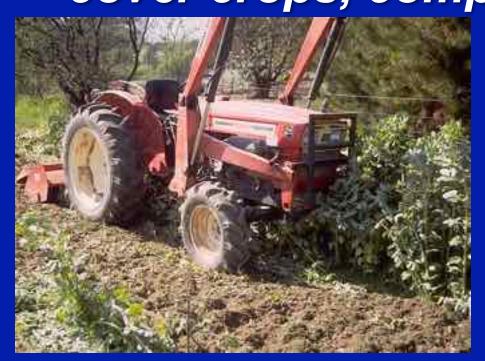
40 ft²

43,560 ft²

Size

Hop Irrigation

- Spaced 3x14 ft. (40 ft²)
- Cool spring = 3 gal/plant/day
- Warm summer = 4 gal/plant/day


- Spaced 2x12 ft. (24 ft²)
- Cool spring = 2 gal/plant/day
- Warm summer = 2.5 gal/plant/day

Hop roots will grow in the entire rooting zone Most roots are in the top 2-3 feet

Hop Nutrition Requirements

- Nitrogen: ~ 100-150 lbs. per acre (needs to be in the soil available by end of May)
- Phosphorous: ~ 0-60 lbs. per acre (if soil analysis is >60 ppm = not needed)
- Potassium: ~ 80-160 lbs. (K₂O) (if soil analysis is >200 ppm = not needed)
- pH: 5.0 to 7.0 = no problems (6.0 is perfect)
- Ca, Mg, Mn, Lime: soils above 5.7pH = nothing needed (ratio of 3Ca:1Mg = good)

Hop Organic Nutrition cover crops, compost, concentrates

Tilled in large biomass of legumes

Till in 3-5 tons/acre in the fall

CalPhos or similar product

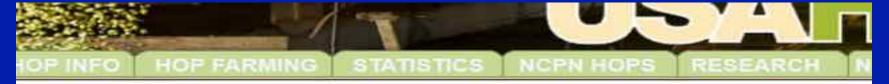
Feather or fish meal

Primary Hop Pests

- Downy Mildew
- Powdery Mildew
- Virus-viroids
- Spider Mites
- Aphids

 Many miscellaneous Secondary pests

Hop Diseases - PREVENTION


Sanitation:

- •Remove or compost all overwintering plant material
- •Trim up lower leaves and side shoots
- Reduce humidity

Hop Latent & Apple Mosaic Virus

Hop Assn. Certification Program

eanup Program

's currently in the NCPN-Hop cleanup program, click here. Please note: not vailable for distribution at this time. Those which have been verified as free have been assigned "virus free numbers" (VF#) and are candidates for able; others may still be undergoing testing, therapy, or require formal hey can be distributed.

lop Sales

material is offered for sale twice a year:

ted quantities of potted plants are available starting in January Sale: limited quantities of unrooted green node cuttings and potted plants ting in June

d on this site, and in the USA Hop News newsletter.

supply. When this happens, NCPN-Hops will prorate the available material nit their requests by the established deadline.

Downy Mildew can ruin the crop

P. Mildew can ruin the crop

Critical Control Period

3 weeks during early cone development

Healthy

Diseased

WA P. Mildew infection examples

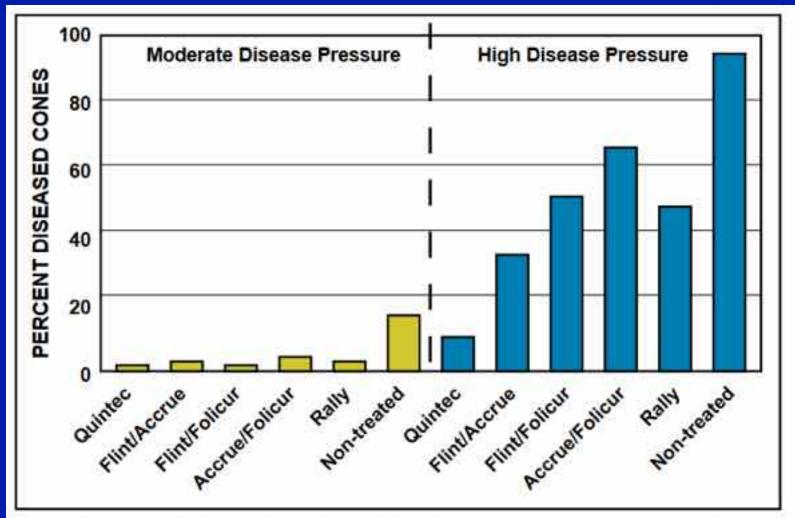


Figure 38. Efficacy of powdery mildew fungicides under moderate and high disease pressure in Washington. Notice that most fungicides provide acceptable control when disease pressure is moderate.

Powdery Mildew

Control:

- Sanitation
- Mod. fertilization
- Mod. irrigation
- •Timely fungicide applications

Hop Diseases (Resistant Varieties)

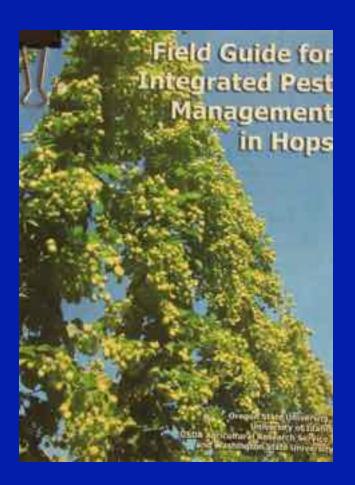
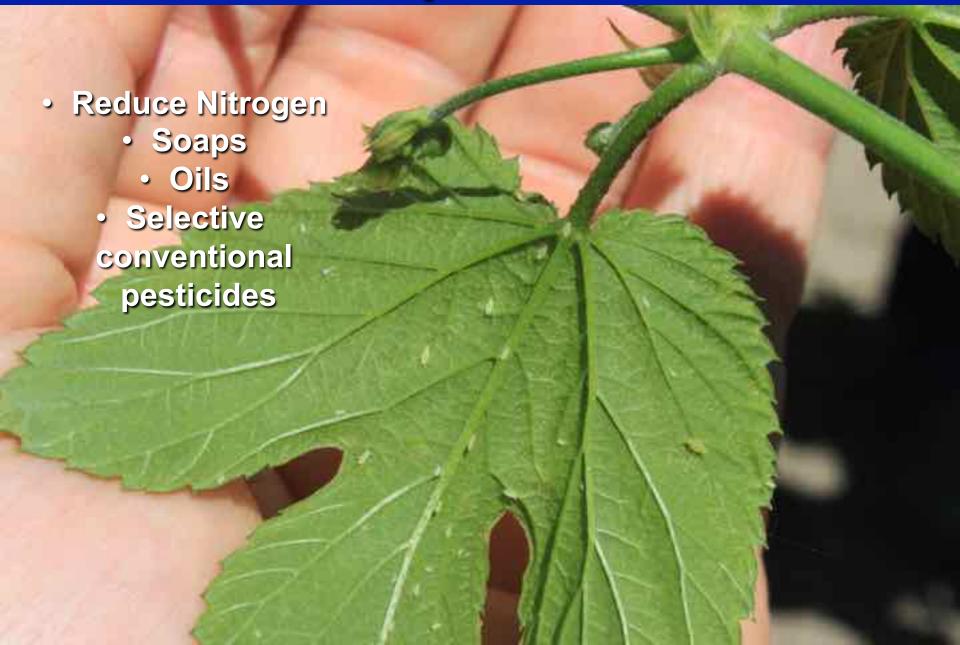


Table 2. Disease Susceptibility and Chemical Characteristics of the Primary Public Hop Varieties Grown in the U.S.

	Usage	Disease Susceptibility*		
Variety		Powdery Mildew	Downy Mildew	Verticillium Wilt
Brewers Gold	Bittering	8	MR	MR
Button	Bittering	-55	MR	R
Cuscade	Aroma	MR	MR	MR
Centennial	Bittering	MR	S	U
Chinook	Bittering	MS	MR	R
Columbia	Aroma	MS	MR	S
Comet	Bittering	報	8	R
Crystal	Aróma	R	5.	R
East Kent Golding	Aroma	8	- 3	MR
First Gold	Bittening	R	5	MR
Fuggle	Aroma	MS	R	.9
Galena	Bittering	8	8	R
Glacier	Afoma	- 8	- 0	U
Hall, Gold	Aroma	MS	R	. 8
Hall Magnum	Bittering	- 8	R	MR
Half, Mittelfrüh	Aroma	MS	8	S
Hult Tradition	Aroma	MR	井	MR
Horizon	Bittering	MS	9	MR
Late Cluster	Aroma	S	S	R
Liberty	Aroma	MR	MR	u
Mt. Hood	Aroma	MS	S	8
Newport	Bittering	R	R	-0
Northern Brewer	Bittering	3.	5	R
Nugget	Bittering	R	S	8
Olympic	Bittering	8	MS	R
Perie	Aroma	S	R	MR
Pioneer	Bittering	MR	MR	U
Saazer	Aroma	9	MS	8
Saazer 36	Aroma	5	MS	8
Spatter	Aroma	.9	R	MR
Starting	Aroma	MS	MR	U
Teamaker	Aroma	MR	MR	8
Tettnanger	Aroma	MS	MS	5
Tolhurst	Aroma	S	8	U
U.S. Teltnanger	Aroma	MS	MS	5
Vanguard	Aroma	S	9	U
Williamette	Aroma	MS	MR	8


Hop Downy & Powdery Mildew

- PM favored by rapid plant growth
- Both like mild temperatures (47-82°F)
- Both like high humidity
- DM likes 24 hours of wetness
- Not the same as PM of grapes

Hop Insects

Table of Contents				
Introduction	Arthropod and Slug Pest Management			
Pest Management, Crop Loss, and IPM	California Prionus Beetle	36		
	Hop Aphid	.38		
Principles of Integrated Pest Management	Garden Symphylan	40		
Systems-level Management	Hop Looper and Bertha Armyworm	42		
Pest and Natural Enemy Identification	Root Weevils	.44		
Pest and Natural Enemy Biology and Life History	Twospotted Spider Mite			
Economic Injury Levels and Economic (Action) Thresholds	Minor Arthropod and Slug Pests	49		
Monitoring for Pests, Damage, and Treatment Success 3	Beneficial Arthropods			
Multi-tactic Management Approaches3	Predatory Mites	.52		
	Predatory Lady Beetles			
Pesticide Toxicology and Selectivity	Aphid Feeders	54		
Pesticide Toxicity Ratings4	Mite Feeders	.57		
Pesticide Resistance Management	Predatory Bugs			
	Minute Pirate Bug	.58		
Disease Management	Big-Eyed Bug	.59		
Fungal and Bacterial Diseases	Predatory Mirid	.59		
Alternaria Cone Disorder8	Assassin Bugs	60		
Black Root Rot9	Damsel Bugs	.60		
Downy Mildew10	Chart of Seasonal Development for Key Groups of			
	Predatory Athropods	61		

Aphids

Spider mites

Paul Vossen
Specialty
Crops Advisor
UCCE
Sonoma-Marin

http://www.paulvossen.com/ paulmvossen@gmail.com

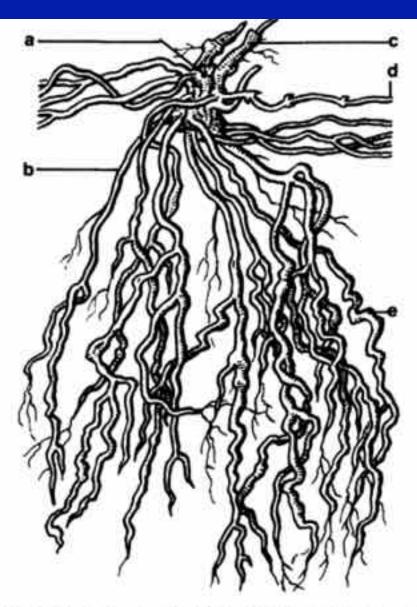


Fig. 9. Displacement of vertical roots: $a - old\ wood$, $b - vertical\ roots$, $c - new\ wood$, d - suckers, $e - root\ tubers$.