INVASIVES WORKSHOP

James A. Bethke

University of California Cooperative Extension Floriculture & Nursery Farm Advisor, San Diego Co.

Presentation Outline

- Invasive pests: What is UC doing about it?
- Moths
 - European Pepper Moth Technical Working Group
 - LBAM
 - European Grape Vine Moth

Presentation Outline

• **Psyllids**

Asian Citrus Psyllid, Olive Psyllid, Tipu Psyllid, Pittosporum Psyllid

- Spotted Wing Drosophila
- Others
 - Glassy-winged sharpshooter
 - Diaprepes Root Weevil
- CDFA Website

ANR's Strategic Vision 2025, the division has identified nine initiatives that represent the best opportunities for ANR's considerable infrastructure and talent to seek new resources and new ways of partnering within and outside UC to find solutions for California

- 1. Improve Water Quality, Quantity, and Security
- 2. Enhance Competitive, Sustainable Food Systems
- 3. Increase Science Literacy in Natural Resources, Agriculture, and Nutrition
- 4. Sustainable Natural Ecosystems
- 5. Enhance the Health of Californians and California's Agricultural Economy
- 6. Healthy Families and Communities
- 7. Ensure Safe and Secure Food Supplies
- 8. Managing Endemic and Invasive Pests and Diseases
- 9. Improve Energy Security and Green Technologies through Innovative Science Linking Engineering, Agricultural, Biological, and Environmental Sciences

- 1. Improve Water Quality, Quantity, and Security
- 2. Enhance Competitive, Sustainable Food Systems
- 3. Increase Science Literacy in Natural Resources, Agriculture, and Nutrition
- 4. Sustainable Natural Ecosystems
- 5. Enhance the Health of Californians and California's Agricultural Economy
- 6. Healthy Families and Communities
- 7. Ensure Safe and Secure Food Supplies
- 8. Managing Endemic and Invasive Pests and Diseases
- 9. Improve Energy Security and Green Technologies through Innovative Science Linking Engineering, Agricultural, Biological, and Environmental Sciences

What is UC doing about it? Managing Endemic and Invasive Pests and Diseases

First Conference on April 25 EIPD Research and Extension Areas

- Exclusion of pests and pathogens
- Emerging Problems with Pests and Diseases
- Integrated Management

Generate and disseminate critical information on identification, monitoring and control strategies
Develop multimedia outreach materials distributed statewide
Provide updates through electronic media

on the most current information.

- Assume leadership roles to support and advise local (Ag Commissioners), state (CDFA) and federal (USDA-APHIS)
- Generate research data to inform regulatory
 policy based on science
- Obtain multi-agency funding in support of research and extension efforts
- Collaborate with researchers nationally and internationally

Duponchelia fovealis Zeller

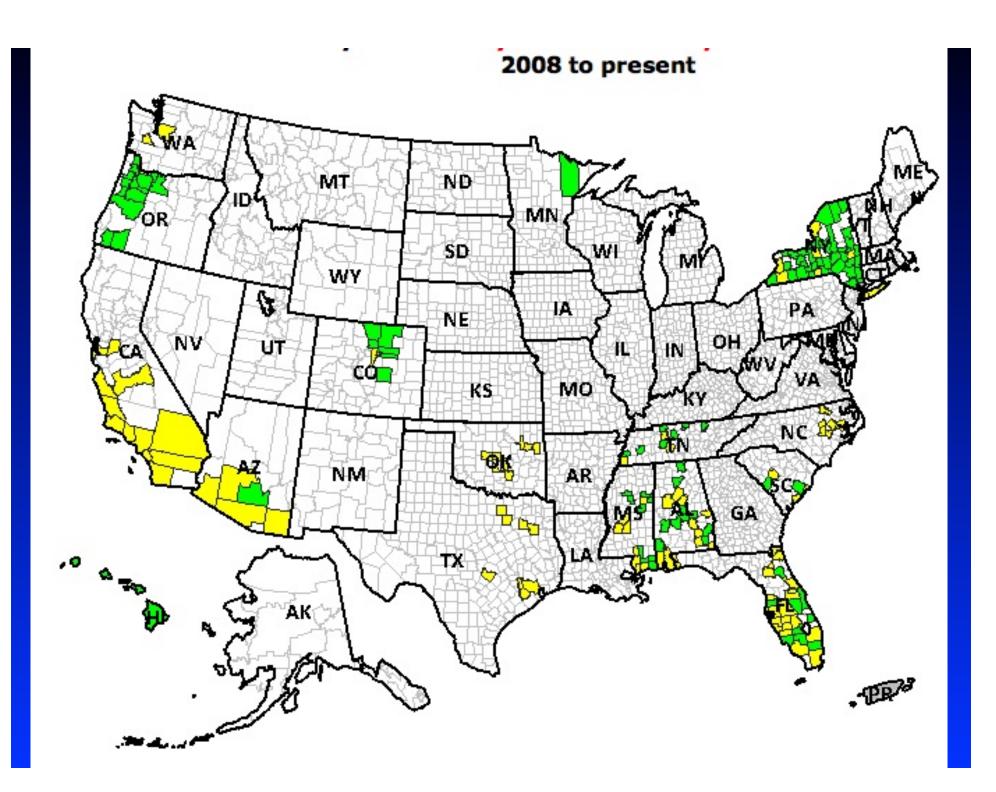
European Pepper Moth

- First indication of a new invasive pest
- Regulatory response
- Technical Working Group
- Minimizing the impact
- Current knowledge
- Current research needs and results

- Contact from county Ag Commissioner
- CDFA and APHIS survey
- Serious impact on local growers
- Succulents, Kalanchoe and Begonia
- Approximately \$250,000 loss
- Restricted shipping
- Increased pesticide use (fogging)

- Contact from county Ag Commissioner
- CDFA and APHIS survey
- Serious impact on local growers
- Succulents, Kalanchoe and Begonia
- Approximately \$250,000 loss
- Restricted shipping
- Increased pesticide use (fogging)

- Contact from county Ag Commissioner
- CDFA and APHIS survey
- Serious impact on local growers
- Succulents, Kalanchoe and Begonia
- Approximately \$250,000 loss
- Restricted shipping
- Increased pesticide use (fogging)



- Contact from county Ag Commissioner
- CDFA and APHIS survey
- Serious impact on local growers
- Succulents, Kalanchoe and Begonia
- Approximately \$250,000 loss
- Restricted shipping
- Increased pesticide use (fogging)

REGULATORY RESPONSE

- Extensive survey using pheromone
- Finds in 15 states
- Formation of a Task Force and a Technical Working Group

REGULATORY RESPONSE

- Extensive survey using pheromone
- Finds in 15 states
- Formation of a Task Force and a Technical Working Group

TECHNICAL WORKING GROUP

- Rob Ahern
- James Bethke
- Julieta Brambila
- Surendra Dara
- Dan Gilrein
- Amanda Hodges
- Galen Frantz
- Jan Hall
- James Hayden

- Graeme Murphy
- Lance Osborne
- Cristi Palmer
- David Riley
- Lin Schmale
- Diane Schuble
- Hugh Smith
- Stephanie Stocks
- Steve Tjosvold

TECHNICAL WORKING GROUP

Sub-groups

- Survey and Diagnostics Jim H. and Julieta B.
- **Biology and Ecology** Steve T. and Jim B.
- Education Dan G. and Stephanie S.
- Management Surendra D. and Hugh S.

CURRENT KNOWLEDGE

CURRENT KNOWLEDGE

Research Priorities

CONTROL List of available pesticides **Search for effective pesticides and rotations Economic Injury Levels Mating disruption Cultural controls Effect of soil types**

Research Priorities

LIFE HISTORY Biology studies Seasonal Phenology in local areas Expected Distribution/Weather mapping Degree Day Models/Phenology Control Models Effect of detritus Is there a Diapause?

Research Priorities

DETECTION

Effective Monitoring/Detection Pheromone Trapping studies Black Lighting BIOLOGICAL CONTROL Biological Control Alternatives HOST PREFERENCES

RECENT RESULTS

Rearing

- Rose, Cow Pea, and Kalanchoe leaves
- Potting media
- Manduca Diet
- **Biological Control**
- Atheata readily eat first instar neonates

RECENT RESULTS

Host Plants in Rearing Cages
Kalanchoe blossfeldiana, Tomato, Peppers, Verbena, Poinsettia
Other plants

• Begonia, Echeveria, Gerbera

RECENT RESULTS

Longevity 10.2 d (N=70)

Fecundity 210.5 eggs/female (N=60) Efficacy (leaf dip assays 2nd instar EPM) Enstar 6%, Scimitar 57.5%, Duragard 72.9%, Pedestal 32%, Ecotec 49%, Pyganic 24%, Surfactants – Dyne-amic, BreakThru, Latron, **NoFoam B - approximately 20%**, Javelin 92%, Proclaim 5SG 4.8oz 100%, Orthene 100%

Control in Europe

France

10 years ago

20-30% losses to cyclamen and hibiscus

Initially *Steinernema carpocapsae* 500 000/m≤ by foliar spray then Bt every 15 days

Prophylaxis is very important

Control in Europe

Denmark

Ornamental pest for more than 10 years Claim Bt is the only effective solution 3 Bt sprays every ten days when populations build 10 water traps/1000 m²

Conclusions

Is already a serious pest of some ornamentals in CA, Not Ag yet

Monitoring/Detection is key, pheromones

Preventative applications of Bt to poinsettia

Neonates are most susceptible

Acephate, Bt, Flubendiamide, Rynaxypyr, Emamectin benzoate

LBAM - a Tortricid moth - a leaf rolling moth

Department of Primary Industries and Water, Tasmania Archive

LBAM - Damage

LBAM has been recorded from over 2,000 different types of plants, encompassing 50 plant families. Host plants include deciduous tree fruits, subtropical fruits, berry fruits, ornamentals, and forest and shade trees. LBAM larvae feed on leaves and buds reducing photosynthetic rate, deforming growth patterns, which leads to general plant weakness and disfigurement. In grapes, apples, kiwifruit, plums, avocados, and citrus, LBAM larvae can feed directly on the fruit, and resulting feeding damage renders fruit unmarketable. Because of the economically important effects of larval feeding, LBAM has a high pest status because of zero tolerance requirements for presence in produce destined for the export markets.

LBAM - Damage

Federal Order State Interior Quarantine

http://www.cdfa.ca.gov/phpps/pdep/lbam/ quarantine.html

- In discussions with all trading partners, a federal order is issued to the infested state.
- Regulates movement of all regulated articles.
- The state uses the order to set the quarantine and take appropriate action.

Who is Affected?

Anyone growing anything except some who grow vegetables that routinely treat for moths.

Growers vs Shippers

Choke Points will still be monitored and inspected, but the growers moving product to the shippers will be under the full quarantine orders.

LIGHT BROWN APPLE MOTH REGULATORY PROCEDURES MANUAL

Table of Contents

Chapter 1. Nurseries and Other Producers Located Inside a State Interior Quarantine

Chapter 2. Nurseries and Other Producers Located Outside a State Interior Quarantine

Chapter 3. Green Waste Transporters and Receivers Inside a State Interior Quarantine

Chapter 4. Community Gardens Located Inside a State Interior Quarantine Chapter 5. Harvested Commodities (Fruits and Vegetables) Inside/Outside a State Interior Quarantine

Chapter 6. Collection and Submission of Light Brown Apple Moth Samples

http://www.cdfa.ca.gov/phpps/pdep/lbam/quarantine.html

European Grapevine Moth *Lobesia botrana*

- The EGVM undergoes two to four generations per year, depending on the temperature
- EGVM overwinters as a diapausing pupa and can often be found under the bark of the vine
- Eggs are flattened and elliptical, and are laid singly or in groups of two or three on or near the buds, flowers, and fruit

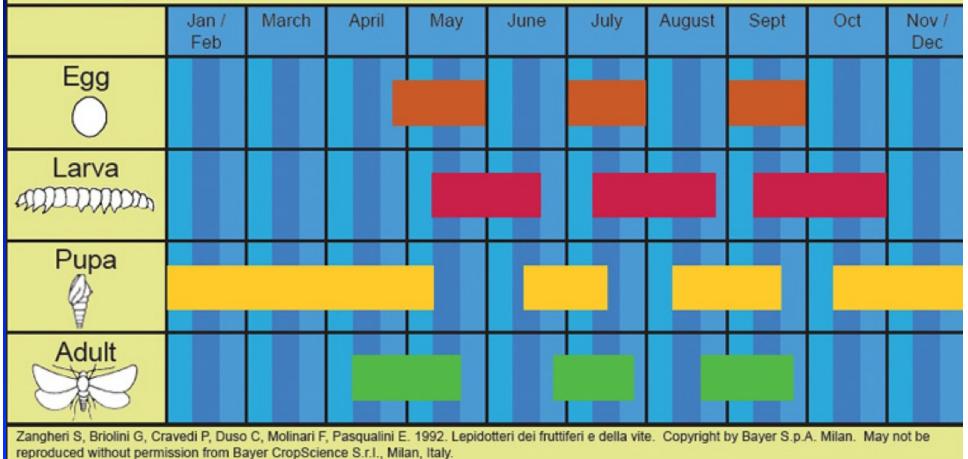
http://www.ipm.ucdavis.edu/EXOTICeurograpevinemoth.html http://www.cdfa.ca.gov/plant/egvm/index.html

European Grapevine Moth Damage

- First generation larvae feed on flower clusters inside a "nest" of webbing.
- Second and third generation larvae feed inside berries, hollowing them out and leaving the outer skin and the seeds.
- Webbing, excrement and fungal infections damage the bunch.
- **Botrytis**

European Grapevine Moth

Management


- Monitoring
 - Delta Traps for adult monitoring
 - Isomate Lures for mating disruption
- Control measures are targeted at the second generation
- Insecticides are less effective after bunch closure
- Insect growth regulators, spinosyns, and *Bacillus thuringiensis*

European Grapevine Moth

Management

Biological Cycle of Lobesia botrana

(guidelines for Northern Italy)

European Grapevine Moth

Monitoring

Set red delta traps with *Lobesia botrana* lures two weeks before bud break. Attach trap to trellis immediately above the canopy. Set at least 2 traps per vineyard with a minimum of 1 trap per 30 acres. Monitor trap weekly through harvest

Invasive Psyllids in California

What is a Psyllid?

Class Insecta

Order Hemiptera

Homoptera

Heteroptera

Aphids, Whiteflies, Adelgids, Leafhoppers, Scale insects, Mealybugs, Cicadas, Spittlebugs, and Psyllids

Sucking mouthparts - xylem and phloem feeders

Psyllid Biology

- Year round cycle
- Slower in cooler months
- Bloom in spring during new flush
- Peak in summer

Monitoring Watch for activity on new flush growth

- Beat sampling
- Sweep netting
- Sticky cards

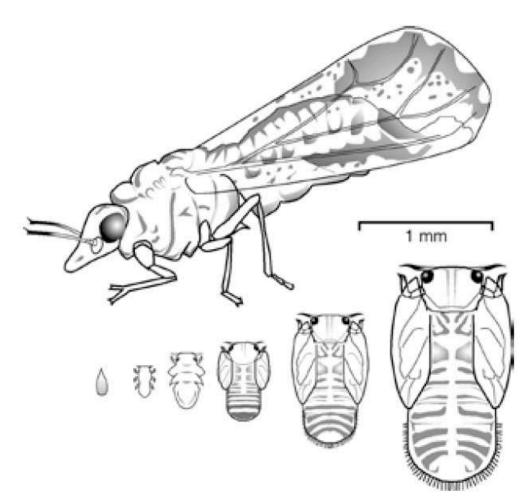
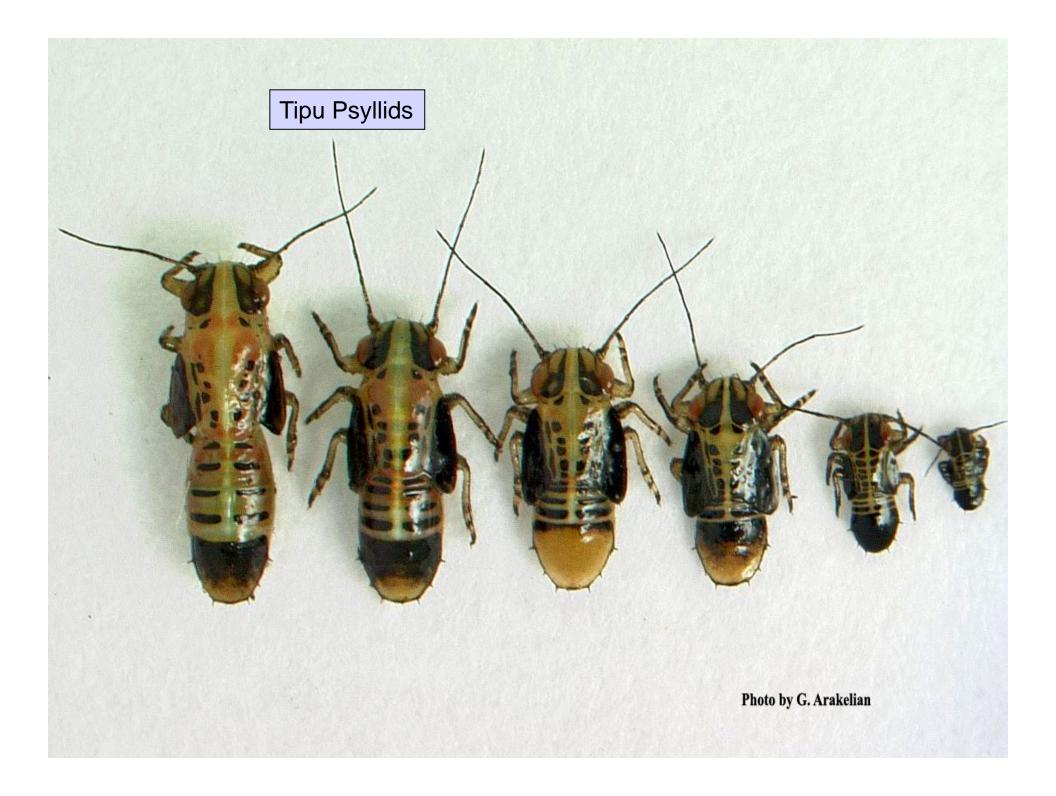


Figure 4. Life cycle of Asian citrus psyllid. Illustration by G. O. Conville after Catling 1970.

Common and Invasive Psyllids

Psyllids of economic importance


http://www.psyllids.org/psyllidsPests.htm

http://www.ipm.ucdavis.edu/PMG/ PESTNOTES/ pn7423.html#MANAGEMENT



Bactericera cockerelli POTATO PSYLLID

Bactericera cockerelli POTATO PSYLLID NYMPHS

The Asian Citrus Psyllid and the Citrus Disease Huanglongbing

The eggs are yellow-orange, tucked into the tips of tiny new leaves, and they are difficult to see because they are so small

The pest insect

The nymphs produce waxy tubules that direct the honeydew away from their bodies. These waxy tubules are unique and easy to recognize.

Nymphs can only survive by living on young, tender leaves and stems.

Thus, nymphs are found only when the plant is producing new leaves.

What plants can the psyllid attack? All types of citrus and closely related plants in the Rutaceae family

- *Citrus* (limes, lemons, oranges, grapefruit, mandarins...)
- Fortunella (kumquats)
- Citropsis (cherry orange)
- Murraya paniculata (orange jasmine)
- Bergera koenigii (Indian curry leaf)
- Severinia buxifolia (Chinese box orange)
- Triphasia trifolia (limeberry)
- Clausena indica (wampei)
- *Microcitrus papuana* (desert-lime)
- Others.....

Plants affected

Asian citrus psyllid feeds and reproduces on Indian Curry Leaf

This Indian curry leaf, *Bergera koenigii*, is grown in Hawaii and the leaves are shipped to California for use in restaurants. It is a favorite host of the psyllid and infested leaves shipped in boxes have been intercepted at airports.

An early sign of the disease is uneven (asymmetrical) yellowing of the leaves

Leaves with HLB disease have a blotchy mottled yellow pattern that is not the same on both sides of the leaf.

The bacterial disease

> Leaves with nutrient deficiencies (Zinc is an example) have the same yellow pattern on both sides of the leaf.

Even more devastating, HLB causes the fruit to be small and oddly shaped with aborted seeds and off-tasting juice

The bacterial disease The fruit grows crookedly, forming uneven segments

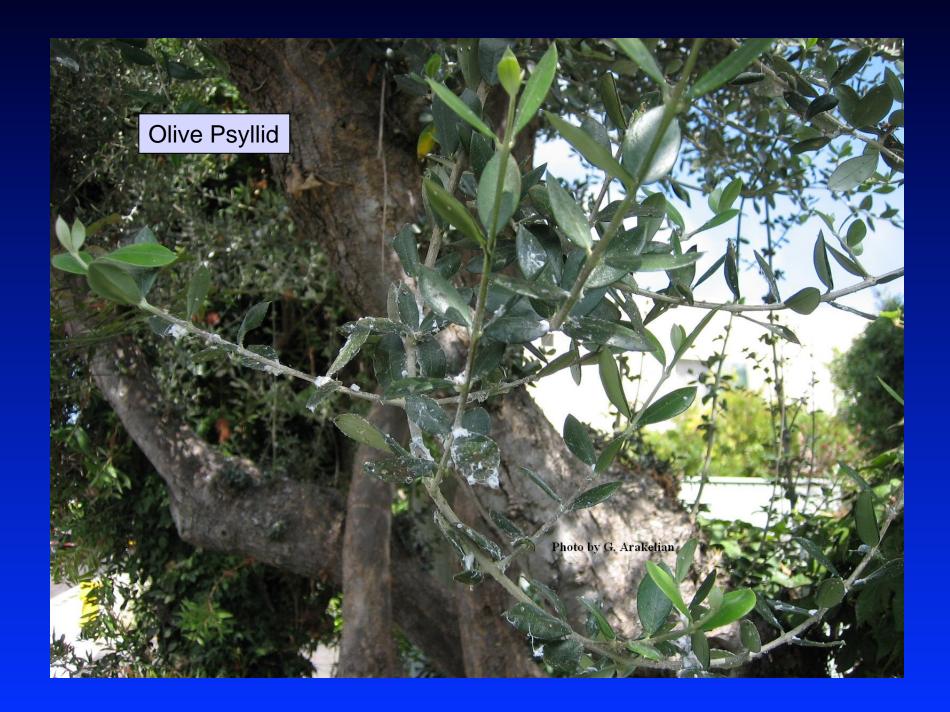
How does the quarantine affect plant movement?

• Citrus and closely related plants can not be moved out of the quarantine area.

• Wholesale nurseries treat their plants with insecticides just prior to shipping if the plants are destined for retailers who lie within the quarantine area.

systemic insecticides

imidacloprid (Admire, Merit, Marathon, Discus, CoreTect) thiamethoxam (Flagship)


dinotefuran (Safari)

foliar insecticides

fenpropathrin (Danitol, Tame) cyfluthrin (Baythroid XL, Tempo SC Ultra) chlorpyrifos (Chlorpyrifos Pro) carbaryl (Sevin XLR Plus, Sevin SL) spirotetramat (Movento)

Psyllid Control

Most psyllids are under natural control, especially native psyllids

Most invasives need additional control measures until they are under some form of natural control - lady bugs, lacewings, parasitoids (Tamarixia)

Psyllid Control

Chemical control

Preservation of natural enemies

Azadirachtin (Azatin), neem oil (Green Light Garden Safe), insecticidal soap (40% potassium salts of fatty acids), and horticultural oil (an insecticide labeled "narrow range," superior, or supreme oil, such as Ultra-Fine, Purespray)

Psyllid Control

Chemical control

Many are well protected by waxy deposits, or in galls or pits

Old products like Malathion, Orthene

Vascular feeders - use a systemic insecticide

The neonicotinoids - imidacloprid, dinotefuran, thiamethoxam, acetamiprid (spray only)

Soil drench treatments for extended control

Drosophila suzukii

Drosophila suzukii

Short life cycle (one to several weeks depending on temperature) 10 generations a year A female may lay as many as 300 eggs during its lifespan

Damage

- Readily attacks undamaged fruit
- Each clutch of eggs is from one to three
- Common vinegar flies (*Drosophila melanogaster*) may also oviposit in the damaged fruit
- Damage can provide an entry site for infection by secondary fungal and bacterial pathogens

Spotted Wing Drosophila Management

- Monitoring for the pest is important
- Eliminate any fruit that has fallen on the ground and any infested fruit
- Remove overripe fruit, wild host
- plants such as wild grape, raspberry, blackberry, etc. from nearby fields
- Ensure timely crop harvest

Spotted Wing Drosophila Management

- Organophosphate and synthetic pyrethroid insecticides
- Lower activity and residual control from spinosyn and organic pyrethrum class insecticides
- GF-120 (spinosyn) baited toxicant for fruit flies

