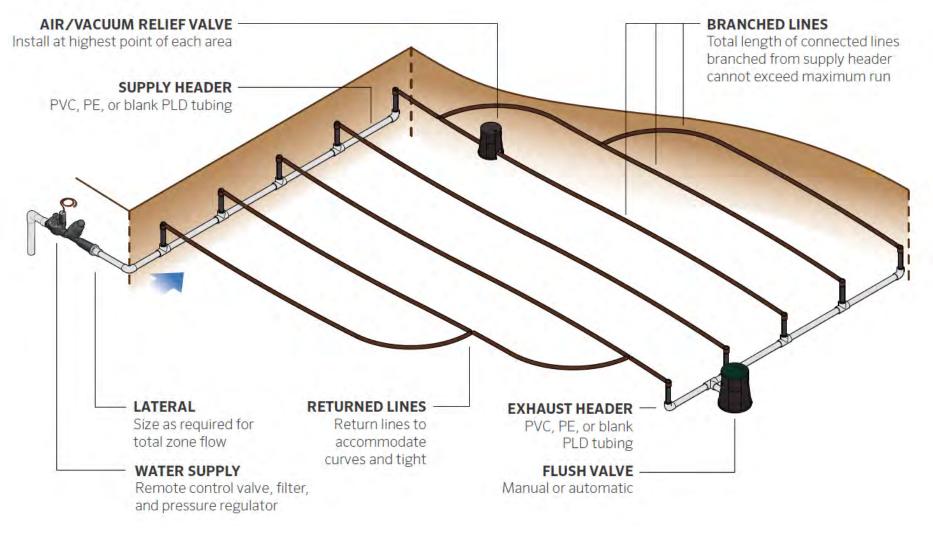
#### Irrigation Scheduling Determining Distribution Uniformity and Irrigation Run time

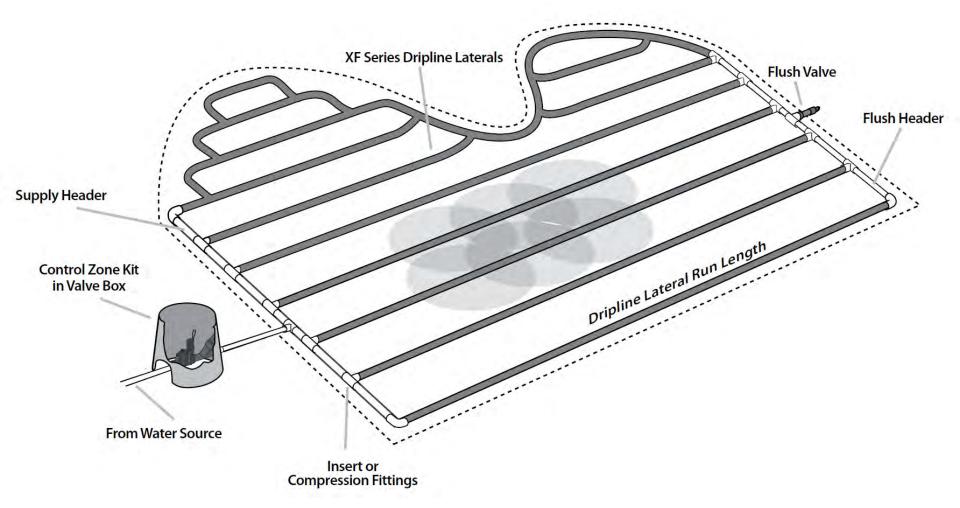
Loren Oki Dept. of Plant Sciences and Dept. Human Ecology UC Davis

> Doing More With Less Stockton, CA December 2, 2016

University of California Agriculture and Natural Resources




# Learning Objectives


- Measuring system performance
  - Determine application uniformity (Distribution uniformity)
- Determining how long to irrigate
  - Calculating run time
  - Obtaining information needed
  - How to use the information

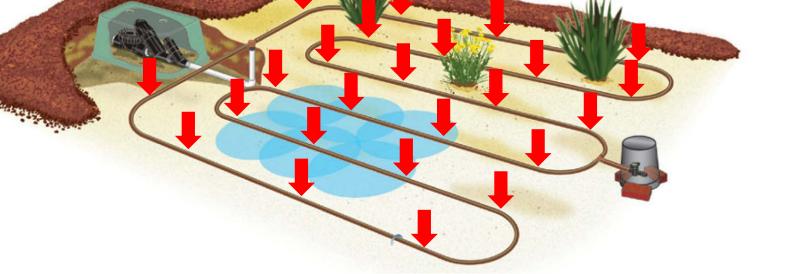
- Discussion focus:
  - Inline drip tube laid in a grid-like pattern
  - Under mulch





From: Hunter Industries




#### Distribution Uniformity Site Assessment

- Inspect the site
- Tune up the irrigation system
- Test the system
- Measure and calculate performance
- Interpret the information

Credit: Irrigation Association Landscape Irrigation Auditor certification program

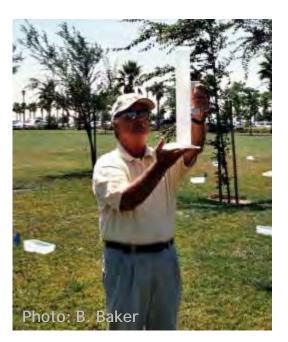
#### Select emitters to measure

- Close to, far from valve
- Across the grid
- Even pattern
- At least 24
  - Multiples of 4



#### Select emitters to measure

- Dig under emitter
- Container
  - 500 mL, 16 oz., pint
- Label containers
- Set container under emitter


#### Select emitters to measure

- Turn on valve
- Collect water
- DON'T OVERFILL!
- Turn off valve
- Note run time

(for this example: 6 minutes)

#### Distribution Uniformity Select emitters to measure

- Measure the volumes in each container
- Measure in mL (milliliters)



| • | Ca | cu | lati | ng      | DU |  |
|---|----|----|------|---------|----|--|
|   |    |    |      | · · · J |    |  |

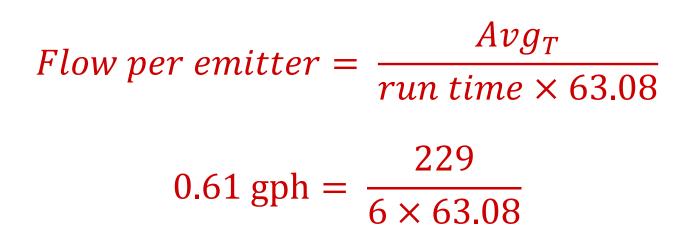
- Average of all (Avg<sub>T</sub>)
- Rank volumes
- Average of bottom ¼ (Avg<sub>LQ</sub>)
- $DU = Avg_{LQ} \div Avg_{T}$
- Target
  - Minimum 70%

| С | ont #              | mL   | rank                | LowQ |
|---|--------------------|------|---------------------|------|
|   | 1                  | 230  | 6                   |      |
|   | 2                  | 255  | 11                  |      |
|   | 3                  | 208  | 3                   | 208  |
|   | 4                  | 235  | 8                   |      |
|   | 5                  | 225  | 5                   |      |
|   | 6                  | 237  | 9                   |      |
|   | 7                  | 223  | 4                   |      |
|   | 8                  | 258  | 12                  |      |
|   | 9                  | 202  | 1                   | 204  |
|   | 10                 | 241  | 10                  |      |
|   | 11                 | 232  | 7                   |      |
|   | 12                 | 202  | 2                   | 202  |
| 1 | Total=             | 2748 | Total=              | 614  |
|   | Avg <sub>T</sub> = | 229  | Avg <sub>LQ</sub> = | 205  |

# Calculating Run Time

- Application rate
- Soil water holding capacity
- Depth to wet
- Scheduling multiplier
- Calculate run time

- We need to know
  - Area irrigated (sq ft)
  - Total number of emitters in the irrigated area
  - Emitter flow rate (gph)


#### • Example 1

- Area irrigated (400 sq ft)
- Total number of emitters in the irrigated area (178)
- Emitter flow rate (0.6 gph)

 $Application rate = \frac{No.of \ emitters \ \times flow \ per \ emitter \ \times 1.604}{area}$ 

$$0.43 inch/hr = \frac{178 \times 0.6 \times 1.604}{400}$$

- Example 2
  - Emitter flow rate based on DU assessment



- Example 2
  - Emitter flow rate (0.61 gph from previous calculation)
  - 18" emitter spacing on tube
  - 18" spacing between tubes

flow per emitter  $\times$  231.1

Application rate =

emitter spacing × lateral spacing

$$0.44 \text{ inch/hr} = \frac{0.61 \times 231.1}{18 \times 18}$$

### Depth to Wet

#### How deep to irrigate

- Depends on plant types
  - Trees, shrubs, ground covers, turf
  - Drought tolerant or not
- Typically 12", 18", 24" and 36"
- For our example of drought tolerant shrubs, we'll use 18"

#### Plant Available Water

- How much water does the soil hold?
- Method 1: Use app
  - SoilWeb and SoilWeb online
- "Available Water Storage (0-100cm)"
- Values are in cm. (e.g., 18.71cm)
- This is equivalent to 0.1871 or ~0.19

### Plant Available Water

- How much water does the soil hold?
- Method 2: Use cha
  - Need to know soil texture
- Back to Method 1
  - Use app
- For this example: silty loam

• PAW = 0.2

| Soil Information  | Soil Information |      | Plant<br>Avail<br>Water<br>(cm/cm)** |
|-------------------|------------------|------|--------------------------------------|
| Coarse            |                  |      | 0.05                                 |
|                   | loamy sand       | 1    | 0.07                                 |
| Moderately Coarse | sandy loam       | 0.8  | 0.11                                 |
| Medium            | loam             | 0.4  | 0.16                                 |
|                   | silty loam       | 0.25 | 0.2                                  |
|                   | silt             | 0.3  | 0.2                                  |
| Moderately Fine   | sandy clay loam  | 0.1  | 0.15                                 |
|                   | clay loam        | 0.07 | 0.16                                 |
|                   | silty clay loam  | 0.05 | 0.18                                 |
| Fine              | sandy clay       | 0.08 | 0.12                                 |
|                   | silty clay       | 0.05 | 0.14                                 |
|                   | clay             | 0.05 | 0.15                                 |

\*Also known as intake rate

\*\*IA Landscape Irrigation Auditor Manual page 177

### Scheduling Multiplier

• To allow for nonuniformity (DU)

Scheduling Multiplier (SM) =  $\frac{1}{0.4 + (0.6 \times DU)}$ 

$$1.07 = \frac{1}{0.4 + (0.6 \times 0.89)}$$

#### Calculate Run Time

#### • Need to know:

- Depth to wet- 18"
- Plant available water- 0.2
  - We will replace half of that amount
- Application rate- 0.43 in/hr
- Scheduling multiplier- 1.07

 $Run time = \frac{Depth to wet \times Plant available water \times SM}{Application rate \times 2}$  $4.47 hr = \frac{18 \times 0.2 \times 1.07}{0.43 \times 2}$ 

#### Convert Run Time

- May need to convert run time to:
  - hr:min
  - -4.47hr=4hr+0.47hr

 $0.47 \times 60 = 28.2$  or ~28 minutes

- 4:28
- Minutes
- 4.47 × 60 = 268.2 or ~268 minutes

# **Drip System Calculations**

#### • Distribution uniformity

- How evenly water is applied
- Run time
  - Application rate- two ways
  - Depth to wet
  - Soil water holding- Plant Available Water
  - Scheduling multiplier
  - Run time and time conversions

#### Thank you lroki@ucdavis.edu

Photo: L.Oki