Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass

R. Bahreini *1,2, A.M. Middlebrook 2, J.A. de Gouw 1,2, C. Warneke 1,2, M. Trainer 2, C.A. Brock 2, H. Stark 1,2, S.S. Brown 2, W.P. Dube 1,2, J.B. Gilman 1,2, K. Hall 1,2, J.S. Holloway 1,2, W.C. Kuster 2, A.E. Perring 1,2, A.S.H. Prevot 3, J.P. Schwarz 1,2, J.R. Spackman 1,2, S. Szidat 4, N.L. Wagner 1,2, R.J. Weber 5, P. Zotter 3, D.D. Parrish 2

* Now at University of California- Riverside, 1University of Colorado- CIRES; 2NOAA Earth Systems Research Laboratory; 3 Paul Scherrer Institut; 4 University of Bern; 5 Georgia Institute of Technology

Contact: Roya.Bahreini@ucr.edu

Introduction: Secondary Organic Aerosol (SOA) can be formed from volatile and intermediate-volatility organic compounds (VOCs, IVOCs) in gasoline and diesel exhaust as well as biogenic hydrocarbons. SOA is a large fraction of ambient submicron aerosol mass and may contribute to regional air quality and climate change. However, its sources and formation pathways are not well understood.

Question: What sources dominate urban SOA formation?

- Vehicular emissions different on weekends
- Use weekday-weekend measurements from NOAA-P3 aircraft in the LA Basin, during CalNex-2010
- Estimate diesel and gasoline contribution to SOA

OA in LA Basin

- Increase in photochemical processing = decrease in Toluene/Benzene
- Significant increase in ΔOA/ΔCO with photochemical processing
- Significant SOA production with photochemical processing
- Similar diurnal profile between photochemically produced gas phase species like acetaldehyde and fossil fraction of total carbon (TC fossil)
- SOA dominated by sources of fossil carbon (i.e., vehicular emissions) in LA Basin

Vehicular Emissions

- Diesel fuel used ~15% of total fuel used in CA

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>CO</th>
<th>Reactive Gases</th>
<th>Black Carbon (BC)</th>
<th>POA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>Low</td>
<td>High</td>
<td>VOCs?</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Diesel</td>
<td>High</td>
<td>Low</td>
<td>IVOCs?</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

- Diesel emissions lower on weekends compared to weekdays (e.g., Marr et al., Atmos. Environ., 2002; Harley et al., EST, 2005; Murphy, ACP, 2008; Pollack et al., JGR, 2012)
 - Higher O3 and lower BC on weekends

Weekday (WD) vs. Weekend (WE) Observations

- WD and WE ΔOA/ΔCO higher than estimated primary enhancement ratios (ΔPOA/ΔCO, de Gouw et al., JGR, 2008) (A-B)
 - SOA produced on both WD and WE
 - WE ΔOA/ΔCO higher than WD by 57%
 - OA production per CO higher on WE

Question: How different WE-WD emissions are?

- WE and WD CO similar (Pollack et al., JGR, 2012)
 - Similar gasoline emissions on WE and WD
 - WE ΔNOx/ΔCO lower by 63% compared to WD (C)
 - WE ΔBC/ΔCO lower by 47% compared to WD (D)
 - Diesel emissions lower by 54% on WE
 - Diesel emissions contribute to 87% and 76% of BC on WD and WE, respectively
 - WE ΔBenzene/ΔCO similar to WD (E)
 - Similar emissions of light aromatics on WE and WD
 - WE ΔToluene/ΔBenzene lower than WD (F)
 - ~2-3 times faster photochemistry on WE

Question: How to separate role of photochemistry from emission differences?

- Consider SOA production on WE and WD in air masses with similar Toluene/Benzene ratios

Estimating SOA from Diesel Emissions

- ΔOA/ΔCO increases by ~1.5 with increase in photochemical processing
- Similar ΔOA/ΔCO on WD and WE in similarly processed plumes
- ΔSOA/ΔCO = ΔOA/ΔCO- ΔPOA/ΔCO

- ΔSOA/ΔCO (WE) = 0.72 ± 0.39
 - Average diesel contribution to SOA is zero within the uncertainties
 - Upper limit contribution from diesel emissions to SOA is 20%

Question: What are the implications?

- Valuable to identify species in gasoline responsible for SOA formation
- SOA from gasoline ~4 Tg/yr globally (within a day of processing); ~16% of global biogenic SOA
- Reducing gasoline emissions may significantly reduce SOA production, locally and globally