Low hybrid onion seed yields relate to honey bee visits and insecticide use

R. Long1 and L. Morandin2
1Farm Advisor, UC Cooperative Extension, Yolo Co., 2 PhD, Postdoc. Fellow UC Berkeley, Dept. Environmental Sciences and Policy Management, UC Berkeley

Introduction
Onion thrips, previously considered of minor importance in hybrid onion seed production in California, vector the newly introduced onion yellow spot virus, a serious pathogen of onions that can cause significant yield losses. Insecticide use to control onion thrips has increased in onion seed fields, coinciding with a steep decrease in yields, especially in Colusa Co. We examined a number of possible contributing factors and found a strong positive correlation between honey bee activity and onion seed set, indicating that a lack of pollination may be contributing to the reduced yields. In addition, honey bee visits to onion flowers were negatively correlated with the number of insecticides applied per field and field size. Reduced onion seed yields in recent years could be associated with the increased insecticide use that may be repelling or killing honey bees, important pollinators of this crop.

Onion seed yields have declined significantly in recent years in Colusa County, where the crop plays a small but important role in the rural economy. Above, a honey bee visits an onion umbel

Onion seed yields (pounds/acre) versus number of insecticides applied per field, Colusa County, 2003-2008. Source: Colusa County Agricultural Commissioner crop reports.

Number of onion seeds per umbel per field versus number of honey bee umbel (flower) visits per 5-minute observation, Yolo and Sacramento counties, 2009. Source: Agricultural Commissioner county crop reports.

Honey bee hives are brought in to onion fields to pollinate the crop. Above, Yolo County farm advisor Rachael Long conducts observations of onion pollination.

This study found that the number of insecticides applied and field size were the strongest predictors of honey bee activity and onion seed yields.

Onion seed yields have declined significantly in recent years in Colusa County, where the crop plays a small but important role in the rural economy.

The negative correlation we found between honey bee activity and number of insecticides applied per field site (including tank mixes with more than one insecticide) suggests that insecticide use to control onion thrips control may be affecting crop pollination and seed set, perhaps by killing or repelling honey bees. This would help explain the significant yield declines in Colusa County during the past 5 years, which occurred concurrently with an increase in insecticide use. Moreover, it confirms a causal relationship: more information is needed on the specific effects of different classes of insecticides on honey bee activity. In addition, cultivar choice can play a role in honey bee activity and needs to be further investigated with respect to pesticide use and bee activity.

Conclusions

The strong positive correlation between honey bee activity and onion seed set indicates that a lack of pollination may be contributing to reduced yields. Onion flowers are well known to be indistinguishable to honey bees. Their maintenance may serve to keep the high levels of pumps to honey nectar and limited nectar towards. Onion floral resources can vary by genotype, with some onions receiving being more attractive to honey bees than others (in part due to higher sucrose contents), as well as by environmental factors, including field and weather conditions. For example, under higher temperatures, as onion flower matures in rainy conditions honey bees have prevailed by honey bees.

The negative correlation that we found between honey bee activity and number of insecticides applied per field site (including tank mixes with more than one insecticide) suggests that insecticide use to control thrips may control by affecting crop pollination and seed set, perhaps by killing or repelling honey bees. This would help explain the significant yield declines in Colusa County during the past 5 years, which occurred concurrently with an increase in insecticide use. Moreover, it confirms a causal relationship; more information is needed on the specific effects of different classes of insecticides on honey bee activity. In addition, cultivar choice can play a role in honey bee activity and needs to be further investigated with respect to pesticide use and bee activity.

The study suggests that growers should investigate which insecticides, applying them only when needed or in a preemptive, to better protect both wild and honey bees. Also, the negative correlation between field size and honey bee activity suggests that using honey bee colonies around onion fields rather than grouping them may increase honey bee activity and pollination in larger fields.