California water issues and management solutions

Nigel W.T. Quinn PhD, P.E., D.WRE
Research Group Leader, HEADS
Berkeley National Laboratory

April 11, 2018
CALIFORNIA WATER CHALLENGES (2013 WATER PLAN)

Greater Drought Impacts — Unreliable Water Supplies
The well-being of all Californians has depended on the reliable storage and movement of large quantities of water throughout the state. It is now becoming increasingly difficult to move water great distances due to declining ecosystems (and related regulatory requirements), rising energy costs, and aging infrastructure. This is wholly apparent in the Sacramento-San Joaquin Delta (Delta). At the same time, the state’s environment and economy are becoming increasingly susceptible to the effects of reduced water-supply reliability.

Competing Water Demands
California’s changing and increasingly competing demands for water come from many sectors. All uses generally can be characterized as urban, agricultural, or environmental. The state’s population continues to grow, and the trend has been toward faster growth in warmer inland regions. From 1990 to 2010, California’s population increased from about 30 million to about 37.3 million. The California Department of Finance projects that this trend indicates a state population of roughly 51 million by 2050.

Increasing Flood Risk
Every Californian is exposed to the significant impacts that result from flooding, including disruption of commerce, response, and the secondary economic impacts that ripple through the state’s economy (e.g., redirection of funding from other State government services).

Degraded Water Quality
The quality of groundwater and surface waters varies significantly throughout the state. Degradation has occurred and is continuing to occur in many locations naturally and as a result of human activities, further limiting usable supplies.

Declining Environmental Conditions
California has experienced decades of unacceptable habitat and species declines. The sustainability of habitats and the species they support are highly vulnerable to climate change, water quality degradation, land use decisions, and many other drivers.

Aging Infrastructure
California’s water supply and flood protection systems, composed of aging infrastructure, have been further weakened by insufficient maintenance in some areas. State and federal governments have not implemented new large-scale infrastructure in decades.
COMPETITION FOR WATER SUPPLY AND WATER QUALITY IN CALIFORNIA
CALIFORNIA’S WATER INFRASTRUCTURE AND DEMANDS

Where California’s Water Comes From
Most of California’s water comes from rain and snow that falls in the northern and eastern parts of the state.

Only Some Is Available to Meet California’s Water Demands
About half of the 200 million acre-feet (MAF) California receives is used by vegetation or goes to evaporation. Another 20 MAF stays in North and Central Coast streams.

Where California’s Water Goes
About 65 MAF is available to meet California’s agricultural, urban, and Central Valley environmental needs.

Precipitation (inches per year)
- 1 inch per year
- 15 inches per year

Source: Adapted from PEZOS, NRCS, National Water and Climatic Center, Oregon State University, 197/2000

Evapotranspiration
Approximately 115 MAF

North and Central Coast
Instream Flows
Approximately 20 MAF

Remaining Water
60–65 MAF

Wetlands, Instream Flows (32%)
(Central Valley environment)

Agriculture (54%)
(mainly irrigation for crops)

Urban (14%)
(landscaping, households, manufacturing, industry)
Year 2050 scenarios considered population between 43.9 and 69.4 million people and irrigated crop area between 8.4 and 9.2 million acres.

Source: CA Water Plan 2013 update
By 2050, urban water demand could increase by 1.0-6.7 MAF/yr, and agricultural demand could decrease by 2.0-5.9 MAF/yr.

Source: CA Water Plan 2013 update
UNDERSTANDING ANNUAL VARIABILITY OF STATEWIDE WATER USE

Source: CA Water Plan 2013 update

Stippling in bars indicates depleted (irrecoverable) water use (water consumed through evapotranspiration, flowing to salt sinks like saline aquifers, or otherwise not available as a source of supply).

1 Detail of bar graph: For water years 2001-2010, recycled municipal water varied from 0.2 to 0.7 MAF of the water supply.
Agency water supply allocations during drought consider:

- hydrologic conditions
- reservoir storage levels
- specific operational criteria
- water quality requirements
- water rights priority
- contractual obligations
- endangered species protections
- Groundwater overdraft risk

In December 2013, the governor formed a multi-agency Drought Task Force to review expected water allocations, examine and coordinate water conservation priorities, coordinate water transfers, and develop groundwater monitoring programs, where necessary.

Source: CA Water Plan 2013 update
Sierra Nevada snowpack could be reduced by 48 to 65 percent by the end of the century.

California relies on snowpack as a major water supply.

Earlier runoff timing and increased water demand in a warmer climate could mean greater water scarcity.

As water demands increase and the reliability of surface water is reduced, demands on groundwater are expected to increase.

Source: CA Water Plan 2013 update
GROUNDWATER INTEGRATION INTO AGENCY PLANNING TOOLS

2015 Stand-alone SJR

2016 Integrated SJR model

2000-2009 avg annual GW Pumping total (taf)

CalSim3.0 ~2.55 maf/yr
C2VSIM ~2.49 maf/yr

CalSim3.0 (4.4.16) ~2.17 maf/yr
C2VSIM r374 ~2.49 maf/yr
CLIMATE CHANGE SCIENCE EVOLUTION

INNOVATIONS

- Expand understanding of historic climate conditions related to flood risk
- Improve climate change analysis for the most recent future climate projections (CMIP5) Ensembles, Individual projections, Downscaling
- Improve understanding and modeling of hydrologic model at higher spatial resolutions
- Coordinate, review, and integrate existing and on-going DWR/USBR-supported climate science research

[Charts and diagrams showing temperature and precipitation changes over time and space]
Many Floods are Linked to Atmospheric River Events

- February 16-18, 1986
- Dec 30, 1996 – Jan 1, 1997
CLIMATE MODELING CAPABILITY IN AGENCY MODELS

Linking atmospheric processes, precipitation and temperature fields, and watershed conditions to inform changes in flood risk.
VISUALIZATION OF CURRENT TRENDS/EVENTS
<table>
<thead>
<tr>
<th>Date</th>
<th>Flows</th>
<th>Rest Flows</th>
<th>Available Recap</th>
<th>Target Recap</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/12/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/13/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/14/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/15/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/16/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/17/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/18/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inflow Storage

<table>
<thead>
<tr>
<th>Date</th>
<th>Inflow</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/21/2018</td>
<td>1,870</td>
<td>347,906</td>
</tr>
<tr>
<td>3/20/2018</td>
<td>300</td>
<td>344,832</td>
</tr>
<tr>
<td>3/19/2018</td>
<td>300</td>
<td>342,821</td>
</tr>
<tr>
<td>3/18/2018</td>
<td>300</td>
<td>342,821</td>
</tr>
</tbody>
</table>

Restoration Flow Pathways

- Washington Ave (SWA)
- Eastside Bypass (EBM)
- Mariposa Bypass
- Mud Slough
- Salt Slough
- Lower Eastside Bypass
- Fremont Ford (FFB)
- Chowchilla Bypass

Chowchilla Bifurcation

- Reach 1A
- Reach 2A
- Reach 3
- Reach 3B
- Reach 4A
- Reach 4B
- Reach 5

Tributaries

- Chowchilla Bypass (CBP)
- Below Bifurcation (SJB)
- Below Sack Dam (SDP)
- Washington Ave (SWA)
- Fremont Ford (FFB)
- At Confluence

Flows

<table>
<thead>
<tr>
<th>Date</th>
<th>Flows</th>
<th>Rest Flows</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/12/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/13/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/14/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/15/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/16/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/17/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/18/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reclamation-SJRRP, 2018
FLOOD CONTROL MEASURES OVER TIME (DWR, 2014)

Sacramento Valley 1850

State Dabney Commission 1905

200,000 CFS to Farmland

50,000 CFS

Jackson Plan 1910

1997 Storm

600,000 CFS

Rivers + Bypasses 600,000 CFS
Reservoirs 400,000 CFS
Total 1,000,000 CFS
Current flood management and flood risk analyses depend on historical estimates and statistics of flood hydrology.

Flood management infrastructure and policy decisions will likely be tested against climate variability and change not experienced in the past 100 years.

Our systems need to be resilient to accommodate a range of hydroclimate futures.

Source: CA Water Plan 2013 update
FLOOD CONTROL OPERATIONS AND EMERGENCY RESPONSE PLANNING

Regulated hydrology and hydraulics (peak flow and stage)
Understanding the Water-Energy Nexus

- Water is used by the energy sector, and energy is used by the water sector.
- The water-energy nexus provides opportunities for conservation of these natural resources, as well as reduction of GHGs.
- Customers have a large role to play in reducing energy and harmful greenhouse gases.

Source: CA Water Plan 2013 update
Institutional Flexibility – Work cooperatively with the Army Corps of Engineers to adapt management of reservoir operation rule curves for flood control and drought management

Water Demand – Improve agricultural and urban water use efficiency through innovation and grant funding – WATERSMART, Title XVI, CALFED

Water Quality – Develop a new suite of model simulation tools that incorporate water quality to improve compliance with State and Federal water quality objectives and that consider future climate change.

Watershed and Forest Management – Work with State and Federal natural resource agencies to reduce wildfires, preserve forest health and assist forest management to augment snowpack retention and runoff.

Groundwater Management and Conjunctive Use – Improve modeling tools for enhanced management of groundwater under SGMA and for storage and online sharing of groundwater pumping and storage data resources.

Water Deliveries – Enhance cooperation between water agencies in investigation and planning of California WaterFix and other initiatives.
• Amount and variability of precipitation changes dramatically across California

• Each region with unique challenges for meeting agricultural, urban, and environmental water demands

Source: CA Water Plan 2013 update
Voter-approved bond measures, Props 50, 84, and 1E, to improve regional planning and implementation projects worth $750M has been awarded for 37 comprehensive management plans and 562 projects.

Source: CA Water Plan 2013 update
SUMMARY

- This is an exciting time to be working in water in California!
- Major projects such as SGMA, WATERFIX and implementing the 2018 Water Plan that will have significant implications for water resource sustainability in our State.
- UCANR has a key role to play in helping to develop scientifically sound and equitable solutions to California’s water problems by facilitating communication among and between policy makers, modelers, farmers and the stewards of our environmental resources.