Barbed Wire Fence Meets the Digital Age:

Utilizing Virtual Fencing to Control Weeds and Improve Rangeland

Brian Allen, Assistant Specialist, brallen@ucdavis.edu
Scott Oneto, Farm Advisor, sroneto@ucanr.edu
UC Cooperative Extension, 12200B Airport Road, Jackson, CA 95642

Introduction

Livestock fencing was the single greatest expense in 19th century production agriculture (Simmons 1935), and it remains a considerable expense in livestock grazing today (Meyer 2005)

Virtual fence (VF) is a new technology that contains livestock within user-defined boundaries without the need for physical fences. Ranchers create and adjust virtual boundaries with a digital map user-interface, like Google Maps.

Livestock wear GPS collars that detect the VF boundaries and produce audio cues followed by mild electrical shocks to contain livestock in the designated area.

Funders \& Collaborators USDA OMRCS United States Department of Agriculture Natural Resou ANR

Trial 1: Summer Rangeland

A local rancher with a 5,000 acre grazing allotment on the El Dorado National Forest lost 7 miles of fence in the 2021 Caldor Fire. Reconstruction costs were estimated to be $\mathbf{\$ 3 5 0 , 0 0 0}$. Using VF collars on 95 cattle enabled grazing to continue the very next year for a one-time fee of $\mathbf{\$ 2 2 , 8 5 0}$ for the VF equipment

Heat map of the herd's GPS locations over the 2 month summer grazing season. The VF is marked with yellow lines. The QR code shows a time lapse of cattle locations on YouTube!

RESULTS
~85\% of cattle obeyed the VF boundary. Non-compliant animals may need to be culled in VF systems.
VF efficacy on forested rangeland was previously unknown. GPS towers communicated with nearly all collars once positioned with good visibility of the range. Livestock locations were reported with an accuracy ${ }^{120}$.

Knowing herd GPS locations enabled significantly faster round-up times acros the vast forested range than years prior.

Trial 2: Winter Rangeland

The study assessed VF's ability to contain 25 cattle in narrow 3 -acre enclosures to create fuel breaks and reduce
Medusahead thatch. The thatch covered up to $\mathbf{8 0 \%}$ of the pasture, which had not been grazed in $\sim \mathbf{2 0}$ years.

Heat map of the heard's GPS locations during he 10 day grazing trial. Black lines represent th F. The pasture did have a physical perimeter fence. The QR code shows a time lapse of cattle locations on YouTube!

RESULTS
The herd grazed the Medusahead thatch from 5,090 to 524 lbs/acre in 10 days.
Cattle exited the VF to calve then rejoined the herd. All other cattle respected the VF

Current VF Options

	VENCE	\triangle Nofence
Cost to contain 50 animals	\$11,500	\$12,050
Collar cost	\$30	\$299 L, \$199 S
Subscription fee	No	Yes
Requires \$10,000 GPS tower	Yes	No
Requires cell reception	Yes	Yes
Collars	One size	Large and small
Battery life	5 month avg.	5 month avg.
Solar powered battery	No	Yes

The GREEN text indicates where one company provides better service than its competitor.

Future Research Areas

Targeted grazing of palatable weeds to improve rangeland.

Reduce wildfire risk by targeting areas with hig fuel loads.

Graze emerging brush on burned landscapes to prevent encroachment and promote reforestation.

Breeding management: Control animal movement or desired breeding outcomes.

Exclude livestock from environmentally and culturally sensitive sites and recreational areas.

Decrease production costs by reduced need to build and maintain physical fences.

