Strategies for Increasing On-Farm **Biodiversity for Environmental Health** and Farm Business Resilience

Ecological intensification by

enhancing biological processes to carry out agroecosystem functions for crop yield and ecosystem health, with potential to reduce external inputs and fuel use

Economic resilience by providing

farms with more product offerings, reduced input costs, and/or stability of yield & income Native blue elderberries (Sambucus nigra ssp. cerulea) (a) and a mixed hedgerow with elderberries growing next to strawberries (b)

Cover Crops

Strategies and Benefits

 Cover crops planted between main crops (in space or time) improve soil health, enhance water infiltration, provide food and habitat for beneficial insects, provide nitrogen.

New UC SAREP Resources and Tools

Elderberry Hedgerows for Harvest

Strategies and Benefits

 Harvestable hedgerow plants such as blue elderberry (Sambucus nigra ssp. cerulea), native to California and long used in Native cultures, can serve as a viable cash crop and promote ecosystem services.³ Hedgerows provide natural habitat for native birds,⁴ crop pollinators,⁵ and natural enemies of crop pests,⁵ and store carbon in long-term woody biomass.⁶

UC SAREP collaborates with producers and researchers to conduct applied research and outreach on multiple types of biodiversity strategies that can help to diversify farming operations while improving environmental health for agroecosystems and natural ecosystems.

Access Our Resources Here!

UC ANR Cover Crops Website https://ucanr.edu/sites/covercrops/

UC ANR Elderberry Website https://ucanr.edu/sites/Elderberry/

Expert Grower Database

- Free, searchable database describing cover cropping strategies, detailed practices, benefits, and challenges of over 50 experienced cover crop growers
- Targets orchards and vineyards in the southern Sacramento Valley and the North Coast viticulture region

New ANR Website: California Cover Crops Resources

- Grower case studies
- Research-based summaries on cover crop management and ecosystem services
- Links to cover crop selection tools and other grower resources

Crop-Livestock Integration

Strategies and Benefits

- Bring animals and crops together (in space or time). Livestock can graze cover crops, crop residue, or planted forage crops during fallow or in orchard alleys.
- Reduce tractor passes needed to manage cover crops in vineyards
- Build soil health and ecology, enhance soil carbon sequestration, and increase climate resilience of cropping systems^{1,2}

- Elderberries are high in antioxidants and anthocyanin.⁷
- Net annual revenues of \$2-3,000 per 1,000-ft hedgerow in first 2-3 years can more than off-set establishment costs.³
- California value-added product makers are seeking local sources for elderberry

New UC SAREP Resources

- Producing Blue Elderberry as a Hedgerow-Based Crop in *California* – growing and marketing guide (ANR Publications)
- Cost of establishment studies (UC Davis cost studies)
- Nutrient analyses of blue elderberry⁷

Crop-Livestock Integration Webinar Playlist

Associate Director

Sonja Brodt

Coordinator for Agriculture & Environment

UC Sustainable Agriculture Research and Education Program

New UC SAREP Resources

 2022 Orchard grazing and contract grazing webinars, with panels of experienced producers and researchers

Sheep grazing on vineyard cover crops (photo credit: Gisele Herren)

References

¹de Faccio Carvalho, P. C., Anghinoni, I., ... & Bayer, C. 2010. Nutrient Cycling in Agroecosystems, 88(2), 259-273.²de Albuquerque Nunes, P. A., ... & Gaudin, A. 2021. Scientific Reports, 11(1), 1-14. ³Brodt, S., Engelskirchen, G., Fyhrie, K. (accepted for publication). California Agriculture. ⁴Heath S.K., Soykan C.U., Velas K.L., Kelsey, R., Kross S.M. 2017. Biological Conservation, 212(Part A), 153-161. ⁵Morandin L.A., Long R.F., Kremen C. 2016. Journal of Economic Entomology 109(3), 1020–27. ⁶Smukler S.M., Sánchez-Morenoc S. ... Jackson L.E. 2010. Agriculture, Ecosystems and Environment 139, 80-97. ⁷Uhl KR, Fyhrie KJ, Brodt SB, Mitchell AE. 2022. ACS Food Science and Technology 2, 347-358.

Sustainable Agriculture Research and **Education Program**

