Effects of Rangeland Conversion to Regenerative and Conventional Almonds Orchards on Ecosystems Function

Fadzayi Mashiri Ph. D (Livestock and Natural Resources Advisor)

Laurent Ahiablame, Kofi Akamani, James Bartolome, Theresa Becchetti, Anthony Fulford, Phoebe Gordon, Roger Duncan, Kaveh Motamed, Jhalendra Rijal, Gavin Stoddard, Daniel Sumner, Cameron Zuber

INTRODUCTION

- General consensus is that widespread rangeland conversion without sound conservation management negatively affect ecosystem services, but limited research has explored the full range of ecosystem changes (negative or positive)
- This multidisciplinary research attempts to do that by quantifying effects of rangeland conversion to almond orchards on multiple ecosystem function indicators in the Central Valley
- Goal: Investigate the tradeoffs and/or synergies between post conversion


METHODS

Sampled 3 sites with rangelands adjacent to almond orchards

- Rangelands
- Almond orchards Young <7yrs vs Old >10yrs \bullet
- Conventional vs Regenerative (integrated crop-livestock) **Data Collected:**
- Plant diversity (using seedbank study up to 12")
- management (regenerative vs conventional almond production) and ecological function, and economic returns.
- We also investigate the socio-economic drivers of rangeland conversion.
- We will explore the potential for integrated crop-livestock systems(regenerative) to enhancing enhance sustainability and profitability.
- Insect Diversity
- Soil characteristics (12")
- Socio-economic drivers of conversion

Data collected not presented here:

Hydrological processes and Economic analysis

Drivers of Rangeland Conversion (+/-)

RESULTS

Lower Economic Returns, Inheritance issues, Fragmentation

	Negative public perceptions about grazing		Working rangeland recognized to conserve plant and animal communities		Conservation Easement Technology to use more marginal rangeland for Ag	Payment for Ecosystem Services Negative perceptions about grazing and GHG		
Environmental Quality Incentives		Reduced grazing recognized to 个 non-native invasives and 认 wildlife		Establishment of the California Rangeland Conservation				

Plant Diversity

- $D = \Sigma(n_i * (n_i 1)) / (N * (N 1))$
- Highest on rangelands except on sites dominated by *J. bufonius* (rush)
- Regenerative young> old
- Regen old similar to conventional

Program (EQIP) and whome communities

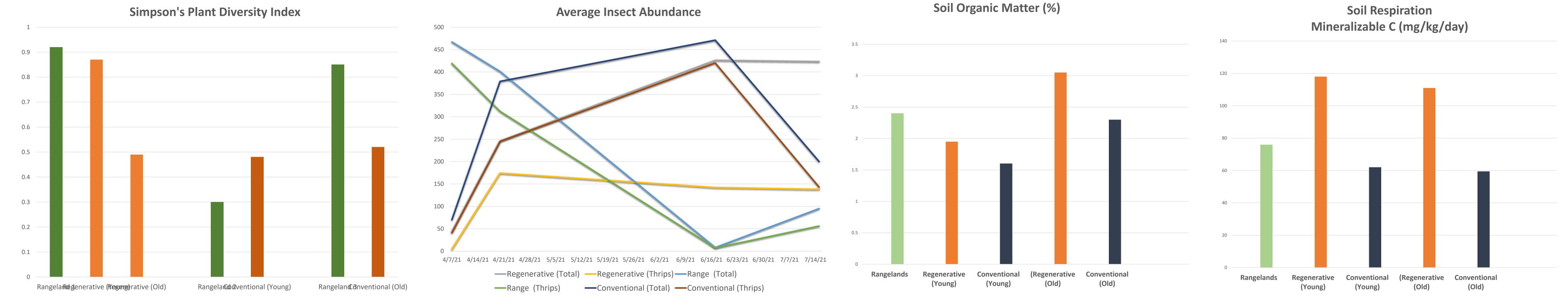
Asynchronous between rangelands and

Thrips highest identified category

% thrips: conventional > regenerative

Insect Diversity

orchards


Coalition (CRCC)

Soil Organic Matter

- Soil Carbon lost at conversion
- SOM build-up as trees mature
- Regen > Conventional
- Old Regenerative > rangelands

- Measures biological activity and decomposition
- Regenerative > Rangelands > Conventional

CONCLUSION

- Some loss in plant diversity in the long-term if diverse cover crops are not consistently planted.
- Post rangeland conversion management matters:- Overall regenerative almond production reduced the negative ecological impacts (plant and insect diversity, soil health) compared to conventional production systems.
- Since conversion is likely to continue, using integrated systems that optimize landscape level ecological health across rangelands and orchards, improve efficient use of by-products, and create multiple income sources should continue to be explored to increase synergies.
- This approach will likely promote cooperation across production systems, sustainability and climate resilient landscapes.

University of California Agriculture and Natural Resources

Cooperative Extension

