A. Introduction
- The citrus industry is continually threatened by the presence of diseases.
- In California citrus represents one of the most economically valuable fruit crops contributing to the development of the State’s agriculture.

A. Method
- Since California has no nursery tree propagation data, a counterfactual scenario was created.
- Spanish nurseries citrus production data was used.
- Regression analyses were performed to investigate the impact of the citrus clean plant units on the yield in Spain (clean plant material produced by the Citrus Variety Improvement Program in Spain (CVIPS))

A. Results

A. Next steps
- Survey to California nurseries to understand how many nursery trees are produced for the known amount of sold CCPP-produced budwood
- Apply the Spanish paths to California situation

B. Introduction
- Problems:
 - Agriculture in California contributes to carbon emissions that exacerbate climate change that affects availability of natural resources such as water;
 - California agriculture is a linear economy and needs to transition to circular economy and reuse agricultural waste;
 - Presence of unused citrus waste (for Bokashi) and almond waste (for Biochar).
- Research has already shown that Bokashi and Biochar have beneficial effects on plants growth (Figure 2).
- Aim of the research: Conduct a cost-benefit analysis to determine the economic feasibility of using biochar and Bokashi in agriculture and the monetary benefits that are accrued from this use.

B. Method
- Analysis is based on the experimental results, the data gathered from the literature and agricultural production supply retailers.
- Treatments included: soil amendments 10% biochar, 10% bokashi, 10%+10% bokashi and untreated control.
- Cost savings for water, fertilizer and carbon sequestration for the three treatments were measured.

B. Preliminary Results

B. Next steps
Determine which one between biochar, bokashi and the mix of the two is the best ultimate strategy

Water cost savings Fertilizer cost savings Carbon benefits

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Water cost savings</th>
<th>Fertilizer cost savings</th>
<th>Carbon benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochar</td>
<td>$24.64/acre/day</td>
<td>$18.69/acre/day</td>
<td>$0.13/acre/day</td>
</tr>
<tr>
<td>Bokashi</td>
<td>$21.12/acre/day</td>
<td>$18.69/acre/day</td>
<td>$0.08/acre/day</td>
</tr>
<tr>
<td>Biochar + Bokashi</td>
<td>$20.9/acre/day</td>
<td>$78.51/acre/day</td>
<td>$0.1/acre/day</td>
</tr>
</tbody>
</table>

Figure 1. Citrus waste.

Figure 2. Growth differences with (starting from left): 10% biochar only, 6.25% Bokashi, 12.5% Bokashi and 25% Bokashi (+ 10% biochar each).

Figure 3. Differences in plants’ water content between using commercial fertilizer and biochar.

Figure 4. Differences in plants’ water content between using commercial fertilizer and Bokashi.

Figure 5. Differences in plants’ water content between using commercial fertilizer and a mix of biochar and Bokashi.