PCB-95 Modulates the Calcium-Dependent Signaling Pathway Responsible for Activity-Dependent Dendritic Growth

Gary A. Wayman,1* Diptiman D. Bose,2* Dongren Yang,2 Adam Lesiak,1 Donald Bruun,2 Soren Impye,3 Veronica Ledoux,4 Isaac N. Pessah,2 and Pamela J. Lein 2,4

1Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USA; 2Department of Molecular Biosciences, University of California, Davis, Davis, California, USA; 3Oregon Stem Cell Center, and 4Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, USA

Background: Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) promote dendritic growth in hippocampal neurons via ryanodine receptor (RyR)-dependent mechanisms; however, downstream signaling events that link enhanced RyR activity to dendritic growth are unknown. Activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain, is mediated by calcium ion (Ca2+)-dependent activation of Ca2+/calmodulin kinase-I (CaMKI), which triggers cAMP response element binding protein (CREB)-dependent Wnt2 transcription. RyRs regulate the spatiotemporal dynamics of intracellular Ca2+ signals, but whether RyRs promote dendritic growth via modulation of this signaling pathway is not known.

Objective: We tested the hypothesis that the CaMKI–CREB–Wnt2 signaling pathway couples NDL PCB-enhanced RyR activity to dendritic arborization.

Methods and Results: Ca2+ imaging of dissociated cultures of primary rat hippocampal neurons indicated that PCB-95 (2,2′,3,3′,5,5′-pentachlorobiphenyl; a potent RyR potentiator), enhanced synchronized Ca2+ oscillations in somata and dendrites that were blocked by ryanodine. As determined by Western blotting and quantitative polymerase chain reaction, PCB-95 also activated CREB and up-regulated Wnt2. Blocking CaMKK, CaMKKβ, MEK/ERK, CREB, or Wnt2 prevented PCB-95–induced dendritic growth. Antagonism of RyR activity to dendritic arborization. This hypothesis derives from observations that

Conclusions: RyR activity contributes to dynamic remodeling of dendritic architecture in response to NDL PCBs via CaMKI–CREB–Wnt2 signaling in rats. Our findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling associated with autism.

Key words: autism, Ca2+, CaMKI, CREB, dendrites, developmental neurotoxicity, hippocampal MEK, neuronal connectivity, neurons, non-dioxin-like PCBs, ryanodine receptor, Wnt2.

Dendritic growth is strongly influenced by neuronal activity as evidenced by the remarkable effect of experience on the development and refinement of synaptic connections, which not only patterns neural circuitry during development but also underlies associative learning (Pittenger and Kandel 2003). The effects of neuronal activity on dendritic growth are mediated primarily, if not exclusively, by changes in intracellular calcium ion (Ca2+) levels (Lohmann and Wong 2005; Segal et al. 2000). We previously identified an NMDA (N-methyl-d-aspartate) receptor-mediated Ca2+-dependent signaling pathway that couples neuronal activity to dendritic arborization via sequential activation of Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), Ca2+/calmodulin kinase-I (CaMKI), and extracellular signal-regulated kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) to enhance the cAMP response element binding protein (CREB)-mediated transcription of Wnt2 [wingless-type mouse mammary tumor virus (MMTV) integration site family member 2] (Wayman et al. 2006).

Polychlorinated biphenyls (PCBs) alter neuronal connectivity by interfering with normal patterns of dendritic growth and plasticity (Lein et al. 2007; Yang et al. 2009). Non-dioxin-like (NDL) PCBs promote dendritic growth via ryanodine receptor (RyR)-dependent mechanisms (Wayman et al. 2012); however, the downstream signaling events that mediate RyR-dependent effects of PCBs on dendritic arborization have yet to be described. In this study, we tested the hypothesis that the CaMKI–CREB–Wnt2 signaling pathway responsible for activity-dependent dendritic growth also couples NDL PCB-enhanced RyR activity to dendritic arborization. This hypothesis derives from observations that a) potentiation of RyR activity by NDL PCBs amplifies ionotropic glutamate receptor signaling (Gafni et al. 2004) and increases intracellular Ca2+ levels in neurons (Wong et al. 1997, 2001); b) Ca2+ signals generated by stimuli that promote dendritic growth, such as repetitive or prolonged depolarization (Empagne et al. 1999; Riquelme et al. 2011) or brain-derived neurotrophic factor (BDNF) (Adasme et al. 2011), are derived primarily from RyR-mediated Ca2+ release; and c) RyR-dependent Ca2+ signals activate CaMK kinases, CREB, and transcription of genes encoding Ca2+-regulated proteins (Adasme et al. 2011; Dolmetsch et al. 1998; W Li et al. 1998). Our findings demonstrate that in cultured rat hippocampal neurons, RyR activity, triggered by either NDL PCBs or neuronal activity, contributes to dynamic remodeling of dendritic architecture via CaMKI–CREB–Wnt2 signaling.

Methods

A complete listing of reagents is provided in Supplemental Material, p. 3 (http://dx.doi.org/10.1289/ehp.1104833). Animals were treated humanely and with regard for alleviation of suffering according to protocols approved by the Institutional Animal Care and Use Committees of Oregon Health & Science University, University of California, Davis, and Washington State University, Pullman.

Cell culture. Hippocampal neurons were dissociated from postnatal day–1 Sprague-Dawley rats (Charles River Laboratories, Wilmington, MA) and cultured at high density (105 cells/cm2) in Neurobasal-A medium (Invitrogen, Carlsbad, CA) supplemented with B27 (Invitrogen) as described previously (Wayman et al. 2006). To visualize dendritic arbors, cultures were transfected at 6 days in vitro (DIV) with the plasmid-encoding microtubule-associated-protein-2B MAP2B (which labels the somatodendritic domain) fused to enhanced green fluorescent protein (EGFP) using Lipofectamine-2000 (Invitrogen) according to the manufacturer’s protocol. A

Address correspondence to P.J. Lein, UC Davis School of Veterinary Medicine, Department of Molecular Biosciences, One Shields Ave., 1120 Haring Hall, Davis, CA 95616, USA. Telephone: (530) 752-1970. Fax: (530) 752-4698. E-mail: pplein@ucdavis.edu

*These authors contributed equally to this work.

Supplemental Material is available online (http://dx.doi.org/10.1289/ehp.1104833).

This work was supported by grants from the National Institutes of Health (R01 ES014901, R01 ES017425, P42 ES04699, R01 MH086032, P01 ES011269, and T32 ES007060); the Hope for Depression Research Foundation; and an unrestricted gift grant from the J.B. Johnson Foundation. The authors declare they have no actual or potential competing financial interests.

Received 8 December 2011; accepted 2 April 2012.
subset of cultures was simultaneously transfected with plasmids encoding dominant negative (dn) CaM Ki (dnCaMKI), dnCREB (also referred to as ACREB), or Wnt inhibitory factor (Wif). PCBs or vehicle (DMSO at 1:1000 dilution) was added to the culture medium for 48 hr beginning at 7 DIV; in a subset of cultures, a CaMK kinase inhibitor (STO-609, 5 μM) or a MEK inhibitor (U0126, 10 μM) was also added to the medium during the same period.

Organotypic hippocampal slices from postnatal day-5 rats were cultured for 3 days as described previously (Lein et al. 2011). At 3 DIV, slice cultures were biolistically transfected with plasmid-encoding tomato fluorescent protein (TFP) using the Helios gene gun (Bio-Rad, Hercules, CA) per the manufacturer’s directions. A subset of slice cultures was simultaneously transfected with siRNA (small interfering RNA) specific for RyR1 or RyR2. Slice cultures were exposed to vehicle, and PCBs were added to the culture medium during 4-6 DIV. A subset of cultures was also exposed to FLA365 [4-(2-aminopropyl)-3,5-dichloro-N,N-dimethylaniline] (10 μM), which was added to the culture medium during the same period.

Dendritic morphology was quantified from digital images of green fluorescent protein–positive (GFP+) or TFP+ neurons using Image J version 1.44p with the Neuron J plug-in version 1.42 to trace neurons (Meijering et al. 2004).

Calcium imaging. Spontaneous and electrically evoked Ca2+ transients were measured in dissociated hippocampal neurons cultured on Greiner CELLSTAR® micro-clear wells (Sigma-Aldrich, St. Louis, MO). Cells were loaded with the Ca2+-sensitive dye Fluo-4 AM (5 μM; Invitrogen) at 37°C for 30 min in imaging buffer consisting of 140 mM sodium imaging buffer consisting of 140 mM sodium
chloride (NaCl), 5 mM potassium chloride (KCl), 2 mM magnesium chloride (MgCl₂), 2 mM calcium chloride (CaCl₂), 10 mM HEPES, and 10 mM glucose, at pH 7.4, and supplemented with 0.05% BSA (bovine serum albumin). Cultures were washed three times with imaging buffer and transferred to the stage of an inverted Olympus IX70 microscope (Olympus America, Center Valley, PA) equipped with a 60 x 1.25 numeric aperture objective. Fluo-4 was excited at 494 nm using a DeltaRam illuminator (Photon Technologies Int’l., Birmingham, NJ); fluorescence emission was captured at 510 nm. Full-frame images were captured with an Evolve™ cooled charge coupled device camera (Photometrics, Tucson, AZ) at 30 frames/sec (fps) using EasyRatioPro software (Photon Technologies Int’l.). In a subset of experiments, cultures were exposed to PCB-95 (2,2’,3,5,6-pentachlorobiphenyl; 2, 20, or 200 nM) from 7–9 DIV before loading with Fluo-4. After baseline recording, cultures were sequentially stimulated with electrical biphasic field pulses (0.5 millisecond) at 1, 2.5, 5, and 10 Hz for 10 sec with 50-sec interstimulus rest periods using platinum electrodes connected to a Master 8 stimulator (A.M.P.I, Jerusalem, Israel). After acquisition, regions of interest were drawn freehand to encompass soma and distal dendrites (separated from the soma by a length of > 2 times the soma diameter). Movies were replayed to quantitatively measure changes in Fluo-4 fluorescence within the regions of interest.

At 7 DIV in separate experiments, spontaneous synchronized Ca²⁺ transients were measured from hippocampal neurons that had not been previously exposed to PCB-95 before loading with Fluo-A. PCB-95 (200 nM) or vehicle (DMSO at 1:1,000 dilution) in imaging buffer was acutely introduced into cultures by continuous flow perfusion (~ 1 mL/min). In a subset of cultures, ryanodine (500 μM; Sigma-Aldrich) was added to the culture medium 1 hr before loading the cells with Fluo-A to irreversibly block RyR channel activity (Buck et al. 1992; Zimanyi et al. 1992), which was verified by a challenge with 4-chloro-m-cresol (4CmC, 2, 20, or 200 nM) from 7–9 DIV before loading with Fluo-4. After baseline recording, cultures were sequentially stimulated with electrical biphasic field pulses (0.5 milliseconds) at 1, 2.5, 5, and 10 Hz for 10 sec with 50-sec interstimulus rest periods using platinum electrodes connected to a Master 8 stimulator (A.M.P.I, Jerusalem, Israel). After acquisition, regions of interest were drawn freehand to encompass soma and distal dendrites (separated from the soma by a length of > 2 times the soma diameter). Movies were replayed to quantitatively measure changes in Fluo-4 fluorescence within the regions of interest.

At 7 DIV in separate experiments, spontaneous synchronized Ca²⁺ transients were measured from hippocampal neurons that had not been previously exposed to PCB-95 before loading with Fluo-A. PCB-95 (200 nM) or vehicle (DMSO at 1:1,000 dilution) in imaging buffer was acutely introduced into cultures by continuous flow perfusion (~ 1 mL/min). In a subset of cultures, ryanodine (500 μM; EMD Biosciences, Philadelphia, PA) was added to the culture medium 1 hr before loading the cells with Fluo-A to irreversibly block RyR channel activity (Buck et al. 1992; Zimanyi et al. 1992), which was verified by a challenge with 4-chloro-m-cresol (4CmC, 100 μM; Sigma-Aldrich). Changes in cytoplasmic Ca²⁺ were continuously recorded at 30 fps. Ca²⁺ transients > 2 times the baseline amplitude were scored as oscillations. The number of oscillations was compared between vehicle and PCB-95-treated neurons. Transient amplitude was measured by normalizing peak change in Fluo-A fluorescence (∆F) to the fluorescence baseline (F₀) and presented as mean ΔF/ΔF₀ for each neuron included in the analysis. Statistical comparisons were made using neurons (n = 30) obtained from three separate dissections. Statistical analysis was performed using unpaired Student’s t test.

Results

PCB-95 alters Ca²⁺ signals in cultured hippocampal neurons. We used real-time Ca²⁺ imaging techniques to examine how subchronic (48 hr) and acute exposure to PCB-95 influences Ca²⁺ signaling behaviors in cultured hippocampal neurons. Exposure to PCB-95 during 7–9 DIV caused a concentration-dependent attenuation of the amplitude of electrically evoked Ca²⁺ transients (Figure 1A,B). This observation is consistent with previous findings that prolonged RyR activation by PCB-95 can deplete RyR-sensitive Ca²⁺ stores (Gafni et al. 2004; Morton-Jones et al. 2008). Evidence that the GABA_A (type A γ-aminobutyric acid) receptor antagonist bicuculline (BIC) triggers dendritic growth via transient rather than prolonged activation of Ca²⁺-dependent signaling pathways (Wayman et al. 2006) suggests that PCB-95 may similarly trigger dendritic growth via amplification of Ca²⁺ signals on a shorter time scale. We therefore examined Ca²⁺ oscillatory behavior in PCB-naïve hippocampal neurons loaded with the Ca²⁺ indicator Fluo-A at 7 DIV immediately before focal applications of vehicle or PCB-95. Although vehicle alone had no influence (Figure 2A), acute application of PCB-95 at 200 nM, a concentration that promotes robust dendritic growth, significantly enhanced the amplitude and oscillations of Ca²⁺ transients in both soma and distal dendrites of cultured rat hippocampal neurons.

![Figure 3](image-url) **Figure 3.** PCB-95-induced dendritic growth requires CaMKK/CaMKI and MEK signaling. Dendritic length (A) and branching (B) were quantified in MAP2B-EgFP⁺ hippocampal neurons (9 DIV) treated with vehicle or PCB-95 for 48 hr after pharmacological blockade of CaMKI by STO-609 (5 µM) or expression of dnCaMKI. (C) Transfection with shRNA for CaMKKα or CaMKIγ, but not CaMKIβ or CaMKIδ, blocked PCB-95-induced dendritic growth. Inhibiting downstream MEK signaling with 10 µM U0126 also blocked PCB-95 effects on dendritic length (D) and branching (E)†, without, †, with U0126. Data are presented as mean ± SE (n = 30 neurons).

*p < 0.05, **p < 0.01, and †p < 0.001 relative to vehicle control. †p < 0.05, and ††p < 0.01 relative to PCB-95 alone.
...hippocampal neurons (Figure 2B, top traces). Amplification of Ca^{2+} oscillations by PCB-95 was dependent on RyR activity as oscillations were completely prevented by pre-incubation of neurons with ryanodine (Figure 2B, bottom traces) under conditions previously shown to completely block gating of RyRs (500 μM, 1 hr) (Buck et al. 1992; Zimanyi et al. 1992). To verify that ryanodine pretreatment in fact blocked all RyR channel activity in hippocampal neurons, a challenge of 4CmC previously shown to activate RyR1 and RyR2, but not RyR3, channel activity (Fessenden et al. 2003), was performed at the end of each recording. Ryanodine pretreatment resulted in a near complete block of 4CmC responses (Figure 2C).

CaMKI–CREB–Wnt2 signaling mediates PCB-95–induced dendritic growth. Previous reports demonstrated that treatment of cultured hippocampal neurons with the CaMK kinase inhibitor STO-609 (2–5 μM) inhibits CaMKI but not CaMKII (Wayman et al. 2004). STO-609 (5 μM) selectively blocked PCB-95 effects on dendritic length (Figure 3A) and branching (Figure 3B) without altering basal dendritic growth. Expression of a previously characterized dnCaMKI (Wayman et al. 2004), also suppressed the stimulatory effects of PCB-95 on dendritic length and branching with no effect on basal parameters (Figure 3A,B). To determine which CaMKI isoforms may be involved in PCB-95–induced dendritic growth, previously characterized small hairpin RNA (shRNA) constructs that suppress individual CaMKI isoforms (Wayman et al. 2006) were expressed in hippocampal neurons. Expression of CaMKIγ shRNA significantly reduced and CaMKIγ shRNA blocked the stimulatory effects of PCB-95 on dendrites; in contrast, shRNAs for β and δ CaMKI had no effect (Figure 3C).

To probe downstream effectors of CaMKI, we first determined whether PCB-95–induced dendritic growth requires MEK/ERK signaling. Western blot analyses of phosphorylated ERK (pERK) levels did not consistently detect significantly increased pERK at 5–30 min after acute exposure of 7-DIV hippocampal cultures to PCB-95 (data not shown). However, the MEK inhibitor U0126 (10 μM) completely blocked the stimulatory effects of PCB-95 on dendritic length and branching in the absence of any effect on basal dendritic growth (Figure 3D,E).

Western blot analyses revealed that, as previously reported (Wayman et al. 2006), BIC increased phosphorylation of the active site (Ser133) of CREB (Figure 4A,B). PCB-95 similarly elicited rapid (<5 min) and sustained (>30 min) CREB phosphorylation. Expression of either dnCREB or CREB-specific shRNA blocked the effects of PCB-95 on dendritic length and branching but had no effect on dendritic growth in vehicle control cultures (Figure 4C,D). We previously showed that expression of either dnCREB or shCREB (short hairpin CREB) does not induce nuclear pyknosis, increase levels of cleaved caspase-3, or significantly alter MAP2B-EGFP expression or dendritic morphology in hippocampal neurons grown in the presence of the serum-free supplement, B27 (Wayman et al. 2006).

Activity-dependent CREB activation stimulates dendritic growth in part via increased Wnt2 expression (Wayman et al. 2006). Stimulation of hippocampal neurons with PCB-95 triggered a doubling of Wnt2 mRNA and this effect was blocked by treatment with the selective RyR antagonist FLA365 (Figure 4E). Expression of the Wnt inhibitor Wif, a secreted protein that binds Wnt and prevents it from activating its receptor Frizzled (Han and Lin 2005), completely suppressed PCB-induced dendritic

![Figure 4](image-url)
growth without altering basal dendritic growth (Figure 4F,G).

BIC-induced dendritic growth requires RyR activity. These data raised the question of whether RyR activity is required for activity-dependent dendritic growth in the absence of PCBs. To address this question we used our previously described model of activity-dependent dendritic growth in which the GABAA receptor antagonist BIC promotes dendritic growth in cultured hippocampal neurons via activation of NMDA receptors (Wayman et al. 2006). Consistent with our previous studies, BIC (20 μM) enhanced dendritic growth in cultures of dissociated hippocampal neurons (Figure 5A). BIC-induced dendritic growth was completely blocked by the RyR channel blocker FLA365 (Figure 5A). Expression of siRNA specific for either RyR1 or RyR2 (Figure 5E). Wnt2, a secreted glycoprotein, binds to the Frazzzled family of receptors to

Discussion

The major finding of this study is that in cultured rat hippocampal neurons, RyR activity, triggered by either NDL PCBs or neuronal activity, contributes to dynamic remodeling of dendritic architecture via Ca2+-dependent activation of the CaMKI–CREB–Wnt2 signaling pathway. We previously demonstrated that activity-dependent dendritic growth in hippocampal neurons is mediated by sequential activation of NMDA receptors, CaMKK, CaMKI, Ras, MEK/ERK, and CREB-dependent transcription of Wnt2 (Wayman et al. 2006). In this study, we confirmed that PCB-95 increases spontaneous Ca2+ oscillations in hippocampal neurons in a manner blocked by ryanodine, and we identified these same signaling molecules as downstream effectors that couple RyR activation to dendritic growth. Previous studies in cultured neurons demonstrated that the commercial PCB mixture Aroclor 1254 (A1254) (Inglefield et al. 2001) and RyR activity (Kemmerling et al. 2007) increased neuronal levels of pCREB. We confirmed that PCB-95 activated CREB in hippocampal neurons as determined by Western blot analyses of pCREB expression, and we extended this finding to demonstrate that PCB-95 also upregulated expression of the CREB-responsive gene Wnt2, as determined by qPCR. More importantly, we established a crucial role for not only CREB and Wnt2, but also CaMKK–CaMKI and MEK/ERK signaling in RyR-dependent dendritic growth using multiple experimental approaches including pharmacological inhibition and expression of dominant-interfering or si/shRNA constructs specific for each of these signaling molecules. Consistent with our earlier studies of activity-dependent dendritic growth in cultured hippocampal neurons (Wayman et al. 2006), shRNAs against both α and γ CaMKI blocked the stimulatory effects of PCB-95 on dendrites, whereas shRNAs for β and δ CaMKI had no effect.

These data support a model in which PCB-95 potentiates RyR activity promotes dendritic growth by triggering the same Ca2+-dependent signaling pathway linked to activity-dependent dendritic growth in hippocampal neurons (Wayman et al. 2006). We propose that PCB-95 interacts with RyR channels to increase the amplitude and frequency of intracellular Ca2+ oscillations, which then trigger sequential activation of CaMKK, CaMKI, and MEK/ERK, resulting in the CREB-activated transcription of Wnt2 (Figure 6). Wnt2, a secreted glycoprotein, functions in the Frazzzled family of receptors to

![Figure 5](image-url)
activate the scaffold protein Dishevelled, which in turn stimulates dendritic growth via effects on the β-catenin and microtubule cytoskeleton mediated by β-catenin and/or activation of the RhoGTPases Rac and/or JNK [members of the rho family of guanosine triphosphate (GTP) hydrolases] (Rosso et al. 2005; Yu and Malecka 2003). In our model, PCB-95 triggers this signaling pathway downstream of the NMDA receptor. However, RyRs are functionally coupled to NMDA receptors (Berridge 2006; Pessah et al. 2010), which considered in the context of our previous studies demonstrating that inhibition of NMDA receptors blocks activity-dependent dendritic growth (Wayman et al. 2006), suggested that RyR activity is required for not only PCB-induced dendritic growth, but also activity-dependent dendritic growth. In support of this hypothesis, we observed that the selective RyR antagonist, FLA365, as well as siRNA knockdown of either RyR1 or RyR2, completely blocked BIC-induced dendritic growth in both dissociated cultures of hippocampal neurons and hippocampal slice cultures.

Our observations add to the emerging experimental evidence supporting a central role for RyRs in neuronal excitability and use-dependent synaptic plasticity (Adasme et al. 2011; Bardo et al. 2006; Berridge 2006).

Functional aspects of neuroplasticity, including long-term potentiation (Lu and Hawkins 2002; Wang et al. 1996), long-term depression (ST Li et al. 1998; Wang et al. 1997) and associative memory (Alkon et al. 1998; Baker et al. 2010; Edwards and Rickard 2006; Galeotti et al. 2008) are altered by experimental manipulation of RyR activity by ligands such as the RyR accessory FK506-binding protein (FKBP12) that directly modulate RyR or by agents that deregulate RyR by disrupting the RyR/FKBP12 complex. Spatial learning is tightly correlated with selective up-regulation of RyR expression (Adasme et al. 2011; Cavallaro et al. 1997; Yang et al. 2009; Zhao et al. 2000). Targeted deletion of RyR3 in mice causes impairments in social behavior (Matsuo et al. 2009) and deficits in contextual fear conditioning but improves spatial learning in the Morris water maze task (Futatsugi et al. 1999; Kouzu et al. 2000), whereas selective knockdown of either RyR1 or RyR2 impairs avoidance memory processes (Galeotti et al. 2008).

Previous studies have implicated a local release of Ca2+ from intracellular stores in the maintenance of dendrites (Lohmann et al. 2002), the regulation of the motility of dendritic filopodia (Lohmann et al. 2005), and the increased size of dendritic spines (Korkotian and Segal 1999). More recently, inhibitory concentrations of ryanodine were reported to block BDNF-enhanced spine formation in primary hippocampal neurons (Adasme et al. 2011). However, our findings are the first to demonstrate that RyR activity is sufficient to promote dendritic growth and is necessary for activity-dependent dendritic growth.

Defective neuronal connectivity is a common pathological feature in most neurodevelopmental disorders, including autism spectrum disorders (ASD) (Bourgeron 2009; Geschwind and Levitt 2007; Rubenstein and Merzenich 2003), which suggests that NDL PCBs are environmental risk factors for ASD. There is experimental evidence that developmental exposure to PCB-95 elicits some aspects of ASD, including an imbalance between excitation and inhibition in the auditory cortex of weaning rats (Kenet et al. 2007) and altered social behaviors in rats (Jolous-Jamshidi et al. 2010). However, it seems more likely that NDL PCBs interact with ASD-linked genes that converge on common signaling pathways to increase ASD risk and/or severity. Emerging evidence suggests that defective neuronal connectivity associated with ASD is mediated in part by defects in neuronal Ca2+ signaling (Lohmann 2009).

A number of genes that encode proteins that have a primary role of generating intracellular Ca2+ signals or are themselves tightly regulated by local fluctuations in Ca2+ concentrations, including CREB and Wnt2, have been linked to ASD (Krey and Dolmetsch 2007; Levitt and Campbell 2009; Pessah and Lin 2008). More compelling are recent studies of a gain-of-function missense mutation in the L-type Ca2+ channel Cav1.2 that causes Timothy syndrome, which has a 60% rate of co-morbidity with autism (Splawski et al. 2004), making it one of the most penetrant monogenic forms of ASD. Neurons differentiated from induced pluripotent stem cells derived from patients with Timothy syndrome revealed increased Ca2+ oscillations and up-regulated expression of genes linked to Ca2+-dependent regulation of CREB, including CaMK (Pasca et al. 2011). Such studies clearly establish these Ca2+-signaling molecules as possible convergence points for genetic variants linked to ASD risk and environmental factors such as NDL PCBs.

Figure 6. Schematic representation of RyR-dependent signaling pathway that mediates PCB-induced and activity-dependent dendritic growth. In the context of activity-dependent dendritic growth, RyR1 and RyR2 in the endoplasmic reticulum of the dendrite functionally link Ca2+ influx via NMDA and AMPA receptors to Ca2+ release from intracellular stores. Increased intracellular Ca2+ as a consequence of RyR activation sequentially activates the CaMKK–CaMK–Ras–ERK–CREB–Wnt2 signaling pathway to promote dendritic growth. Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; pCat, β-catenin; Friz, frizzled, the cognate receptor for Wnt2; Ipk, inositol 1,4,5-trisphosphate; mGlur, metabotropic glutamate; PMCA, plasma membrane calcium ATPase; R, receptor; VGCC, voltage-gated Ca2+ channel.

References

Environmental Health Perspectives
 PCs promote dendrites via Ca²⁺-dependent signals

Bardo S, Cavazini MD, Emptage N. 2006. The role of the endo-
plasmic reticulum Ca²⁺ store in the plasticity of central

Berridge MJ. 2006. Calcium microdomains: organization and

19(2):231–234.

Buck E, Zimaný I, Abramson JJ, Pessah IN. 1992. Ryolodine sta-
bilizes multiple conformational states of the skeletal muscle

1997. Late memory-related genes in the hippocampus
revealed by RNA fingerprinting. Prog Natl Acad Sci USA
94(16):8660–8667.

Dalmetsch RE, Xu K, Lewis RS. 1998. Calcium oscillations
mediate hydrogen peroxide-induced activation of
phosphate receptor-sensitive Ca²⁺ release, store-operated
channels and release of Ca²⁺ from intracellular stores.

Edwards TM, Rickard NS. 2006. Pharmaco-behavioral evi-

the effect of neurons using Ca²⁺-permeant caged Inositol
1,4,5-trisphosphate on neurite outgrowth. J Neurochem

Emptage N, Bias TV, Fine A. 1999. Single synaptic events
activate synaptic NMDAR-dependent mechanisms. Nat

Faghi H, Wong PW, Pessah IN. 2004. Non-complainer 2,3,5,6-
substituted diphenyl ether activates synaptic Ca²⁺-permeant
channel receptor signaling in embryonic cerebellar granule
neurons by a mechanism involving ryolodine receptors.

Galeotti N, Quattrone A, Vivoli A, Norcini E, Bartolini A,
Jolous-Jamshidi B, Cromwell HC, McFarland AM, Meserve LA.
2002. Ryanodine receptors (RyRs) and store-operated

Ghelardini C. 2008. Different involvement of type 1, 2, and 3
ryanodine receptors RyR1, RyR2 and RyR3 in synaptic plasticity
and behavioral flexibility of the mouse hippocampus.

Gigena J, Lein PJ. 2008. Evidence for environmental suscep-
tibility in autism: What we need to know about gene ×

tors mediates hydrogen peroxide-induced activation of
phosphate receptor-sensitive Ca²⁺ release, store-operated
channels and release of Ca²⁺ from intracellular stores.

Giglio IA, Pessah IN. 1992. Ryolodine induces persistent inactivation of the Ca²⁺
channel from skeletal muscle sarcomplasmic reticulum.

Yoshikawa H, Shibata S. 2000. Mutant mice lacking ryolodine receptor type 3 exhibit
deficits of contextual fear conditioning and activation of
calcineurin-dependent protein kinase II in the

possible role for Ca²⁺ signaling. Curr Opin Neurobiol
17(1):122–129.

Lein PJ, Behar HD, Pessah IN. 2011. Acute hippocampal
calcium slice preparation and hippocampal slice cultures. Methods

Lein PJ, Yang D, Bachstetter AD, Tilson HA, Harris JY, Mervis RF,
et al. 2010. Perinatal exposure to polychlorinated
biphenyls (PCBs) alters hypnosis sensitivity and
spatial learning in mutant mice lacking ryanodine receptor
type 1 required for activation by 4-chloro-

permeant caged InsP₃ ester shows that Ca²⁺ spike frequency

Lohmann C. 2009. Calcium signaling and the development of
specific neuronal connections. Prog Brain Res 175:305–312.

Lohmann C, Finski A, Bonhoeffer T. 2005. Local calcium tran-
sients regulate the spontaneous motility of dendritic

calcium release stabilizes developing dendrites. Nature
418(6904):808–810.

Lohmann C, Wong RD. 2005. Regulation of dendritic growth
and plasticity by local and global calcium dynamics.

Lu YF, Hawkins RD. 2002. Ryanodine receptors contribute to
cGMP-induced late-phase LTP and CREB phosphorylation in

Matsuo N, Tanda K, Nakashima K, Yamasaki N, Toyama K,
Takao K, et al. 2009. Comprehensive behavioral pheno-
typing of ryanodine receptor type 3 (RYR3) knockout
mice: decreased social contact duration in two social
interaction tests. Front Behav Neurosci 3: doi:10.3389/
neuro.08.003.2009 (Online 7 May 2009).

Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M.
2004. Design and validation of a tool for neurite tracing and
analysis in fluorescence microscopy images. Cytometry A

Monte-Jones RT, Cannell MB, Housley GD. 2008. Ca²⁺ entry
via AMPA-type glutamate receptors triggers Ca²⁺-induced
Ca²⁺ release from ryanodine receptors in rat spiral ganglion

uncover cellular phenotypes associated with Timothy

Pertinger C, Kandel ER. 2003. In search of general mechanisms
for long-lasting plasticity: a synopsis and the hippocampus.

Perspond C, Pessah IN. 2010. Acute hippocampal
dendritic plasticity and ryanodine receptor
calcium release channel from skeletal muscle sarcomplasmic reticulum.

For light sensing through Dishevelled, Rac and NPK regulates

Takao K, et al. 2009. Comprehensive behavioral pheno-

Wog Wong PW, Pessah IN. 2004. Non-complainer 2,3,5,6-
substituted diphenyl ether activates synaptic Ca²⁺-permeant
channel receptor signaling in embryonic cerebellar granule
neurons by a mechanism involving ryolodine receptors.

Wayman GA, Yang D, Bode DS, Leasaki A, Ledoux B, Bruon D,
et al. 2012. PCB-95 promotes dendritic growth via ryano-
dine receptor–dependent mechanisms. Environ Health Perspect
120:997–1002.

Wayman GA, Yang D, Bode DS, Leasaki A, Ledoux B, Bruon D,
et al. 2012. PCB-95 promotes dendritic growth via ryano-
dine receptor–dependent mechanisms. Environ Health Perspect
120:997–1002.

Wayman GA, Yang D, Bode DS, Leasaki A, Ledoux B, Bruon D,
et al. 2012. PCB-95 promotes dendritic growth via ryano-
dine receptor–dependent mechanisms. Environ Health Perspect
120:997–1002.

Wayman GA, Yang D, Bode DS, Leasaki A, Ledoux B, Bruon D,
et al. 2012. PCB-95 promotes dendritic growth via ryano-
dine receptor–dependent mechanisms. Environ Health Perspect
120:997–1002.

Wayman GA, Yang D, Bode DS, Leasaki A, Ledoux B, Bruon D,
et al. 2012. PCB-95 promotes dendritic growth via ryano-
dine receptor–dependent mechanisms. Environ Health Perspect
120:997–1002.

Wayman GA, Yang D, Bode DS, Leasaki A, Ledoux B, Bruon D,
et al. 2012. PCB-95 promotes dendritic growth via ryano-
dine receptor–dependent mechanisms. Environ Health Perspect
120:997–1002.
Supplemental Material

PCB 95 Modulates Calcium-Dependent Signaling Pathway Responsible for Activity-Dependent Dendritic Growth

Gary A. Wayman¹*, Diptiman D. Bose²*, Dongren Yang², Adam Lesiak¹, Donald Bruun², Soren Impey³, Veronica Ledoux⁴, Isaac N. Pessah² and Pamela J. Lein², ⁴†

¹Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164; ²Department of Molecular Biosciences, University of California, Davis, CA 95616; ³Oregon Stem Cell Center and ⁴Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239

*These authors contributed equally to this work

†Correspondence should be addressed to:

Pamela J. Lein, PhD
UC Davis School of Veterinary Medicine, Department of Molecular Biosciences
One Shields Avenue, 1120 Haring Hall, Davis, CA 95616
Telephone: (530) 752-1970; Fax: (530) 752-4698; Email: pjlein@ucdavis.edu
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>3</td>
</tr>
<tr>
<td>Table 1. Sequences of RyR siRNA used in neuronal cells</td>
<td>4</td>
</tr>
<tr>
<td>WNT2 quantitative polymerase chain reaction (qPCR)</td>
<td>4</td>
</tr>
<tr>
<td>HEK cell culture and transfection</td>
<td>4</td>
</tr>
<tr>
<td>Supplemental References</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1. Specificity of RyR siRNAs</td>
<td>6</td>
</tr>
</tbody>
</table>
Supplemental Methods

Materials
PCB 95 (2,2΄,3,5΄,6-pentachlorobiphenyl, >99% purity) and PCB 66 (2,3΄,4,4΄-tetrachlorobiphenyl, >99% purity) were purchased from AccuStandard, Inc. (New Haven, CT). FLA365, which blocks RyR channels (Mack et al. 1992) was a generous gift from Michele Chiesi (CIBA). Bicuculline was purchased from Sigma (St. Louis, MO); U0126, from Calbiochem (EMD4Biosciences, Rockland, MA); and STO-609, from Tocris Biosciences (Ellisville, Missouri). Construction and characterization of the following expression vectors were previously published (Wayman et al. 2006): Microtubule-associated protein 2B (MAP2B)-enhanced green fluorescent protein (EGFP) fusion construct subcloned into the pCAGGS expression vector, pCAG-tomato fluorescent protein (TFP) and Wif expression vectors. Also previously described and characterized: plasmids encoding dominant negative (dn)CaMKI (K49E, T177A, IHQS286DDEE, F307A) (Wayman et al. 2004) and pCAGACREB (Arthur et al. 2004), and small hairpin (sh)RNA constructs targeting the α, β, γ and δ isoforms of Ca^{2+}/calmodulin kinase (CaMK)I subcloned into the p702P vector (Wayman et al. 2006). A detailed description and characterization of RyR-specific and negative control siRNA primers (Invitrogen, Carlsbad, CA) is provided in the supplemental material for the companion paper (Wayman et al. 2012). Three different sets of siRNA primers with differing GC levels were designed for RyR1 and for RyR2 using the Invitrogen (Carlsbad, CA) stealth RNAi service. Each set (which was a mixture of 2 separate siRNAs) was tested for efficiency and specificity using HEK cells stably transfected with either Ryr1 or Ryr2. Data from these experiments was used to select one set against each RyR isoform to use in experiments in neuronal cell cultures (described in Table S1). The Invitrogen negative control kit were used as controls; sequences of these negative control siRNA are proprietary but are confirmed by Invitrogen to not be homologous to any expressed genes in the vertebrate transcriptome.
Supplemental Material, Table 1. Sequences of RyR siRNA used in neuronal cells

<table>
<thead>
<tr>
<th>RyR1-specific siRNA</th>
<th>RyR2-specific siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGAGGAACUUCUACACGCUGCGAUU and AAUCGCAGCGUGUAGAAGUUCUCUG</td>
<td>CAAGCGCAUCGAGAGGCUACUUU and AAAGUAGACCCUCUCGAUGCGCUUG</td>
</tr>
</tbody>
</table>

WNT2 quantitative polymerase chain reaction (qPCR)

Total RNA was isolated from dissociated hippocampal neuron cultures (9 DIV) using Trizol (Invitrogen) according to manufacturer’s instructions. RNA (50 ng to 3 mg) was reverse transcribed with Moloney murine leukemia virus reverse transcriptase (Invitrogen) and 50–250 ng random primers (Invitrogen). qPCR primers were designed by MIT’s Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) using default parameters with the following exceptions: rodent and simple repeat library was on, product size was 50–200bp, primer size was 18–27 bases, Tm was 66ºC–72ºC, maximum self-complementarity was 5, and maximum 30 complementarity was 3. Primer sequences for Wnt2 are: forward GGC GTT GTA TTT GCC ATC ACC AG; reverse GCT GTC CTT GCC ACT CCC TTT C. PCRs (10ml) contained 1 ml 103 PCR buffer (Invitrogen), 2.5 mM MgCl2, 200 mM dNTP (Roche), 0.125–0.25 mM primer (IDT), 13 SYBR green I (Invitrogen), and 1 U platinum Taq (Invitrogen). PCR was run on an Opticon OP346 (MJ Research) for one cycle at 95ºC for 35 s, and 30–50 cycles at 94ºC for 15 s; 68ºC–70ºC for 40 s. RT-PCR experiments were normalized to GAPDH RNA levels (other housekeeping genes showed similar results). All RT-PCR generated 100-fold higher levels of product relative to no reverse transcriptase controls.

HEK cell culture and transfection

Human embryonic kidney (HEK 293) cells were maintained in DMEM medium supplemented with 2 mM glutamine, 100 μg/ml streptomycin, 100 U/ml penicillin, 1 mM sodium pyruvate, and 10% FBS. Cells were transfected with full-length cDNA for rabbit Ryr1 or Ryr2 cloned into the
pCI-neo expression vector (Promega, Madison, WI) using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Stably transfected cells were obtained by Geneticin sulfate (500 μg/ml) selection for 2 wk. RyR1 and RyR2 expression were confirmed by immunocytochemistry using antibody 34C (University of Iowa Hybridoma Bank, Iowa City, IA) or C3-33 (generous gift of Dr. G. Meissner, University of North Carolina), respectively. Cultures were transfected with siRNA (25 pmol) using Lipofectamine RNAiMax (Invitrogen) per the manufacturer’s instructions. RyR expression was quantified by in-cell western 48 h after transfection using anti-RyR1 antibody 34C (1:25) or anti-RyR2 antibody C3-33 (1:1000), and counterstaining with the nucleic acid binding dye DraQ5 (LICOR-Biosciences). Cultures were scanned using the LICOR Odyssey infrared imager. Total RyR signal (800 nm) was normalized to DraQ5 signal (700 nm) within the same well. Three wells were analyzed per treatment; significant differences were identified using one-way ANOVA with post hoc Newman-Keuls.

Supplemental References

Supplemental Material, Figure 1. Specificity of RyR siRNAs. Wild type HEK293 cell line (HEK293null), which lack detectable RyR expression, were stably transfected with Ryr1 cDNA (HEK293RyR1, top left) or Ryr2 cDNA (HEK293RyR2, top right). RyR expression was quantified via densitometry of in-cell western blots 48 h after transfection with RyR isoform-specific siRNA constructs. Shown are representative images of in-cell western blots using antibodies 34C and C3-33 to probe RyR1 and RyR2, respectively, and Draq5 to stain nuclei; densitometric analyses of RyR1 and RyR2 expression normalized to Draq5 within each well are summarized in the bar graphs. As illustrated in bottom panels, siRNA 2-RyR1 did not knockdown RyR2 expression in HEK293RyR2 cells; conversely, siRNA 1-RyR2 did not knockdown RyR1 expression in HEK293RyR1 cells. Data expressed as the mean ± SD (n=3 wells).