Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: Insight gained using metabolomic approaches

Ning Li a, Jun-Yan Liu c, Valeriy Timofeyev a, Hong Qiu a, Sung Hee Hwang c, Dipika Tuteja a, Ling Lu a, Jun Yang c, Hideki Mochida a, Reginald Low a, Bruce D. Hammock c, Nipavan Chiamvimonvat b,⁎

a Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, USA
b Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
c Department of Entomology and UCD Cancer Center, University of California, Davis, Davis, CA, USA

1. Introduction

Cardiovascular disease is the leading cause of morbidity and mortality in the Western societies [1]. The incidence and prevalence of cardiac failure are increasing secondary to progressive aging of the population [2]. Once heart failure develops, the condition currently is irreversible and is associated with a very high mortality rate. Moreover, cardiac failure is associated with an increase in cardiac arrhythmias and sudden cardiac death.

We have previously documented beneficial effects of several potent soluble epoxide hydrolase (sEH) inhibitors (sEHIs) [3-5] in cardiac hypertrophy [6]. Indeed, sEH enzyme belongs to a relatively unexplored pathway of inflammatory lipid mediators by cytochrome P450 enzymes, transforming arachidonic and linoleic acids to various biologically active compounds, including epoxyeicosatrienoic acids (EETs) or hydroxyeicosatrienoic acids (HETEs) and epoxyoctadecenoic acids (EpOMEs), respectively. EETs and EpOMEs are further metabolized by sEH to their corresponding diols, dihydroxyeicosatrienoic acids (DHETs) and dihydroxyoctadecenoic acids (DHOMEs), respectively [7,8]. EETs have vasodilatory properties similar to that of endothelium-derived hyperpolarizing factor (EDHF) [9]. In addition, EETs produce an anti-inflammatory effect, at least in part, by inhibiting the activation of nuclear factor (NF)-κB in cardiac myocytes. Here, we tested the biological effects of sEHIs on the progression of cardiac remodeling using a clinically relevant murine model of MI. We demonstrated that sEHIs were highly effective in the prevention of progressive cardiac remodeling post MI. Using metabolomic profiling of the inflammatory lipid mediators, we documented a significant decrease in EETs/DHETs ratio in MI model predicting a heightened inflammatory state. Treatment with sEHIs resulted in a change in the pattern of lipid mediators from one of inflammation towards resolution. Moreover, the oxylipin profiling showed a striking parallel to the changes in inflammatory cytokines in this model. Our study provides evidence for a possible new therapeutic strategy to improve cardiac function post MI.

Published by Elsevier Inc.
Hence, metabolomic profiling can provide an instantaneous snapshot of the physiology of a particular group of cells. Indeed, using metabolomic profiling of the inflammatory lipid mediators, we documented a significant decrease in EETs/DHETs ratio in MI model predicting a heightened inflammatory state. Moreover, the oxylipin profiling showed a striking parallel to the changes in inflammatory cytokines. Finally, metabolomic profiling further provides important insights into the beneficial actions of sEHIs in this clinically relevant model.

2. Methods

The investigation conforms with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996) and were approved by the University of California, Davis Institutional Animal Care and Use Committee.

2.1. sEH inhibitors (sEHIs)

Two sEHIs, 1-adamantan-1-yl-3-[5-[2-(2-ethoxy-ethoxy)-ethoxy]-pentyl]-urea (AEPU) [5] and trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) were used in the study (see Fig. 1a for the structure of the compounds). The compounds were synthesized in our laboratory. The synthesis, physical properties and spectral characteristics of AEPU and t-AUCB were previously described [6,12]. Measurement of water solubility and plasma concentration of the sEHIs is presented in the Online Supplementary Data.

2.2. Myocardial infarction model in mice

A total of 76 male, wild type, 10- to 13-week-old C57Bl/6J mice were used. Eight mice died in the perioperative period. Seven mice were excluded from the study because of failure of the coronary occlusion, leaving a total of 61 mice in the study. Myocardial infarction (MI) model in mice (ischemia/reperfusion) was created using procedure as described [13] using 45 min of ischemia and followed for a period of 3 weeks. Mice were randomized 3 days before surgery to receive two different sEHIs (Fig. 1a), AEPU in drinking water (100 mg/L) or t-AUCB (15 mg/L) [12] in the drinking water or water alone. Sham-operated animals underwent the same procedure without tying the suture but moving it behind the left anterior descending coronary artery.

2.3. Morphometric and histological analyses

Cardiac sections were stained with Masson’s trichrome. The percentage of infarcted area represents the ratio of connective tissues to total LV area and was calculated by computerized planimetry (NIH Image J) [14] and described in details in Online Supplementary Data. Measurements were performed by an observer blinded to the treatment groups. Additional histologic studies were performed using Sirius Red to assess for collagen content.

2.4. Whole-Cell Patch-Clamp Recordings

Cardiac myocytes were isolated from left ventricular free wall (LVFW) remote from the infarcted area using protocol previously described for MI model in rats [15]. Action potentials (APs) were recorded at room temperature using the perforated patch technique as previously described [16]. All other experiments were performed using the conventional whole-cell patch-clamp technique at room temperature [17]. Additional details are presented in the Online Supplementary Data.

2.5. Analysis of cardiac function by echocardiography

Echocardiograms to assess systolic function were performed using M-mode and two-dimensional measurements as described in...
the Online Supplementary Data. Fractional shortening (FS), a surrogate of systolic function, was calculated from left ventricle dimensions as follows: \(FS = \left(\frac{EDD - ESD}{EDD} \right) \times 100\% \), where EDD and ESD represent end-diastolic and end-systolic dimension, respectively.

2.6. In vivo electrophysiologic studies in mice

In-vivo electrophysiologic studies were performed as previously described [18,19]. Additional details are presented in the Online Supplementary Data.

2.7. Metabolomic profiling of oxylipins

Plasma samples stored at -80 °C were thawed at room temperature. Oxylipin profiling was performed using a modification of a previously published method [4] and described in detail in Online Supplementary Data.

2.8. Measurement of plasma cytokine levels

Plasma samples were collected 3 weeks after sham or MI operation and stored at -80 °C until assayed. Plasma cytokine levels were...
analyzed using a Cytometric Bead Array kit (CBA mouse inflammation kit, BD Biosciences) to measure the concentrations of interleukin-6 (IL-6), interleukine-1β (IL-1β), interleukin-10 (IL-10), monocye chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α) and interleukin-12p70 (IL-12 p70). Data were analyzed using BD Cytometric Bead Array Analysis software (BD Immunocytometry Systems).

2.9. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)

Hearts from sham and treated as well as untreated mice were fixed 24–48 h in 4% neutral-buffered paraformaldehyde and later subjected to paraffin embedding and serial sectioning (5 μm). In situ Cell Death Detection Kit, TMR red (Roche Diagnostics), was used for the detection of apoptotic cells (please also refer to details in Online Supplementary Data).

2.10. Western blot analysis

Immunoblots were performed as previously described [16]. The following primary antibodies were used: (1) polyclonal anti-sEH antibody (1:200 dilution) against affinity-purified recombinant human sEH was raised from rabbits as previously described [20], (2) polyclonal anti-brain natriuretic peptide antibody (a kind gift from Dr. Seubert’s laboratory) and (3) anti-GAPDH antibody (Sigma) was used as an internal loading control.

2.11. Statistical analysis

Statistical comparisons were analyzed by one-way ANOVA followed by Tukey or Games–Howell tests for post hoc comparison. Statistical significance was considered to be achieved when P<0.05.

3. Results

3.1. Beneficial effects of sEHIs in a murine model with myocardial infarction (MI)

We created MI in 10-week-old male C57BL/6J mice (Charles River, Wilmington, MA) using previously described techniques [13]. Three days before surgery, mice were randomized to receive either one of the two sEH inhibitors (sEHIs, Fig. 1a): AEPU (100 mg/L) [5] or t-AUCB (15 mg/L) [12] in drinking water or no treatment and this exposure was continued for 3 weeks after the surgery. Measurement of plasma drug levels is presented in the Online Supplementary Data. Fig. 1a shows structures of the two sEHIs used in the study. Fig. 1b shows photomicrographs of examples of whole hearts from MI mice treated with AEPU or t-AUCB in the drinking water for 3 weeks compared to MI alone or sham-operated hearts after three weeks of follow up. All MI mice showed evidence of an increase in chamber dilatation associated with MI at follow up. In contrast, treatment with sEHIs resulted in a decrease in the infarct size and prevented the development of cardiac dilatation post MI. Summary data are shown in Fig. 1c illustrating a significant increase in the ratio of heart weight/tibial length (HW/TL) in the MI group compared to sham-operated hearts. In contrast, there were no significant changes in the HW/TL ratio in the MI groups treated with AEPU or t-AUCB compared to sham-operated controls.

3.2. Non-invasive assessment of cardiac function by echocardiography

We assessed the chamber size and systolic function in sham-operated and MI mice compared to MI mice treated with sEHs using echocardiography. As shown in Fig. 2a using two-dimensional and M-mode echocardiography, treatment with AEPU or t-AUCB resulted in a significant improvement in LV systolic function associated with an improvement in chamber size. Summary data for the fractional shortening are shown in Fig. 2c and Table 1 depicting a significant improvement in fractional shortening in MI mice treated with t-AUCB at 3 weeks of follow up compared to MI alone. Similar beneficial effects were observed after three-week treatment with AEPU (Fig. S1 in Online Supplementary Data).

3.3. Left ventricular (LV) remodeling after MI

To directly quantify the degree of LV remodeling after MI, histologic analyses were performed. Fig. 2b shows histologic sections using Masson’s trichrome stain from a sham-operated heart compared to MI hearts with or without treatment with t-AUCB. All MI mice showed evidence of an increase in chamber dilatation associated with myocardial scars as previously described for this model [13,21]. Treatment with t-AUCB resulted in a significant decrease in infarct size as well as a marked beneficial effect on the cardiac chamber remodeling. Direct quantification of the extent of connective tissues is presented in Figs. 3a, c showing a significant decrease in the percentage of infarcted area/total LV area in the treated group compared to MI alone. To further assess the degree of cardiac remodeling, we isolated single LV cardiac myocytes from LV free wall remote from the infarcted area as described in the Online Method. Additional histologic sections using Sirius Red stain for collagen are shown in Fig. S2 in Online Supplementary Data. Fig. 3b shows representative photomicrographs of bright-field images of single isolated cardiac myocytes showing a significant increase in cell size in MI mice compared to sham animals. Treatment with sEHIs resulted in a significant decrease in cell size. Cell size was further quantified using cell capacitance measurement with whole-cell patch-clamp techniques and summary data are shown in Fig. 3d illustrating a significant decrease in cell size in the treated group compared to MI alone (*P<0.05). Hypertrophic marker was directly assessed using Western blot analyses and a polyclonal antibody directed against brain natriuretic peptide (BNP) (Fig. S3) showing an increase in BNP level in MI mice compared to sham animals. Treatment with t-AUCB for 3 weeks resulted in a decrease in the BNP to the control level. Similarly, treatment with t-AUCB for 3 weeks significantly increased the capillary density in the border zone in MI mice compared to MI alone (Fig. S4 in Online Supplementary Data).

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>EDD (cm)</th>
<th>ESD (cm)</th>
<th>LVPW (D) (cm)</th>
<th>LVPW (S) (cm)</th>
<th>FS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>6</td>
<td>0.31±0.02</td>
<td>0.13±0.01</td>
<td>0.09±0.01</td>
<td>0.16±0.01</td>
<td>64.2±2</td>
</tr>
<tr>
<td>Sham + t-AUCB</td>
<td>6</td>
<td>0.30±0.02</td>
<td>0.14±0.01</td>
<td>0.09±0.01</td>
<td>0.15±0.01</td>
<td>61.1±1</td>
</tr>
<tr>
<td>MI alone</td>
<td>11</td>
<td>0.36±0.02</td>
<td>0.25±0.02</td>
<td>0.12±0.01</td>
<td>0.16±0.01</td>
<td>33.3±3</td>
</tr>
<tr>
<td>MI + t-AUCB</td>
<td>11</td>
<td>0.34±0.02</td>
<td>0.16±0.02</td>
<td>0.10±0.01</td>
<td>0.15±0.01</td>
<td>52.3±3</td>
</tr>
</tbody>
</table>

EDD, end diastolic dimension; ESD, end systolic dimension; LVPW (D), left ventricular posterior wall thickness in diastole; LVPW (S), left ventricular posterior wall thickness in systole. Data are mean ± s.e.m. (one-way ANOVA Games–Howell test).

*P<0.05 comparing MI alone with sham.
†P<0.05 comparing treated vs. untreated MI animals.
3.4. Prevention of cardiac arrhythmias in MI mice

We next performed in vivo electrophysiologic studies (EPS) in treated and untreated MI mice at three weeks as previously described [19] to test whether sEHIs have salutary effects on cardiac arrhythmias in the setting of chronic MI. Shown in Fig. 4a are examples of surface electrocardiogram and simultaneous intracardiac electrograms from atria and ventricles from MI mice showing inducible atrial and ventricular arrhythmias using programmed electrical stimulation. The susceptibility to increased atrial and ventricular arrhythmias was significantly suppressed in MI mice which had been randomized to the treatment with sEHIs. Summary data are shown in Table 1 in the Online Supplementary Data.

3.5. Reversal of electrical remodeling in MI mice treated with sEHIs

We further examined the cellular basis for the increase propensity to cardiac arrhythmias by performing patch-clamp analysis using isolated cardiac myocytes. APs were recorded using perforated patch-clamp techniques. APs were markedly prolonged in myocytes isolated from MI mice compared to those of sham animals (Fig. 4b). Moreover, treatment with sEHIs resulted in a significant reversal of
the electrical remodeling (Fig. 4b). Summary data shows significant prolongation of AP duration (APD) at 90% repolarization (APD90) in MI animals (Fig. 4c). Treatment with t-AUCB resulted in a significant decrease in APD90 compared to MI alone. In order to further investigate the basis for the cardiac AP prolongation observed in the MI animals, we next examined whole-cell transient outward K+ current (Ito) from single LVFW myocytes from the three groups of animals. Fig. 4d shows representative current traces.

Fig. 5. Plasma levels of selected oxylipin and cytokines. (a, b) Oxylipin profiling from sham, MI and MI treated with t-AUCB at 3 weeks of follow up (*P < 0.05 comparing sham or treated MI groups to MI alone). (c) Serum concentrations (in pg/ml) of IL-12p70, TNF-α, IFN-γ, MCP-1, IL-10 and IL-6 from sham, MI and MI treated with t-AUCB at 3 weeks of follow up (*P < 0.05 comparing sham or treated MI groups to MI alone). See supplementary materials for full oxylipin profile.
elicited using a series of voltage-clamp steps from a holding potential of -80 mV. The observed prolongation in APD90 in the MI model was associated with a striking decrease in Ito (Fig. 4d). Treatment with t-AUCB resulted in a significant reversal of Ito down-regulation observed in the MI model. Fig. 4e shows summary data for the current density-voltage relations of the peak Ito from three groups of animals. There was a significant decrease in the peak Ito in the MI group compared to sham-operated animals (*P<0.05). The decrease in Ito was partially reversed in the MI group treated with t-AUCB (*P<0.05 comparing MI with or without treatment with t-AUCB).

3.6. Metabolomic profiling of the inflammatory lipid mediators using liquid chromatography/tandem mass spectroscopy (LC/MS/MS)

Treatment with t-AUCB significantly increased the levels of EETs. Specifically, the plasma levels of 14(15)-, 11(12)-, and 8(9)-EET in MI mice were 0.34±0.09, 0.26±0.07, and 0.24±0.08 nM, respectively. Note that 5(6)-EET is not stable during the analytical procedure and no 5(6)-EET data are reported. After administration of t-AUCB, the plasma levels of 14(15)-, 11(12)-, and 8(9)-EET increased significantly to 1.07±0.19, 0.5±0.15, and 0.54±0.14 nM, respectively (*P<0.05). In addition, treatment with t-AUCB increased the level of

![Fig. 6. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end Labeling (TUNEL) and Western blot analysis. (a) In situ cell death detection kit was used for the detection of apoptotic cells. Three independent experiments were performed. TUNEL-positive cells were visualized using a confocal microscope. (b) An example of a TUNEL-positive myocyte (red) was shown with cardiac myocyte membranes (green) and nuclei (blue). The fraction of apoptotic cells was determined by dividing the number of TUNEL-positive cells (red) by the total number of DAPI-positive cardiac myocyte nuclei (blue). (c) Immunoblots showing sEH protein from LV free wall in four different groups of animals; treated and untreated sham and MI. GAPDH protein was used as an internal loading control. (d) Summary data showing the densitometry of sEH protein level normalized to GAPDH level in the four groups of animals.](image-url)
EETs in a similar manner in sham animals (See Table 3 in Online Supplementary Data). This finding can be depicted more clearly by comparing ratios of EETs to DHETs. EETs are metabolized to respective DHETs in the presence of sEH; therefore, we further analyzed the ratios of epoxides to the respective diols as an indicator of sEH action (Fig. 5a). Importantly, MI resulted in a significant decrease in the plasma ratio of total EETs/DHETs (Sum EET/Sum DHET) as well as 8(9)-EET/8(9)-DHET, 11(12)-EET/11(12)-DHET and 14(15)-EET/14(15)-DHET compared to sham animals (Fig. 5a; *P<0.05). Treatment with t-AUCB in the MI animals resulted in a significant increase in the plasma ratios of total EETs/DHETs as well as 8(9)-EET/8(9)-DHET, 11(12)-EET/11(12)-DHET and 14(15)-EET/14(15)-DHET compared to MI alone (Fig. 5a; *P<0.05). There was also a significant increase in the plasma ratios of total EETs/DHETs as well as 8(9)-EET/8(9)-DHET and 14(15)-EET/14(15)-DHET comparing t-AUCB treated MI animals and sham-operated animals (Fig. 5a; *P<0.05). Fig. 5b shows similar findings in EpOMe/DHOMe ratios. Complete oxylipins are presented in Tables 2 and 3 of the Online Supplementary Data. Additional oxylipin analyses in MI mice treated with AEPU, the second sEHI used in the study are shown in Fig. S4 in Online Supplementary Data. Similar to analyses in MI mice treated with AEPU, the second sEHI used in the study is [10,11]. Our present study provides direct evidence for the anti-inflammatory effects in the setting of cardiac ischemia/reperfusion.

3.9. Expression of sEH in the MI model

sEH has been documented to be highly expressed in liver and kidney. Moreover, we have previously documented a high level of expression of sEH in mouse atrial and ventricular myocytes. To directly test whether MI may up-regulate the sEH expression level, we performed Western blot using LVFW from sham, MI and MI animals treated with t-AUCB at 3 weeks. There were no significant differences in the sEH protein expression in sham, MI or MI animals treated with t-AUCB (Fig. 6c). As shown in Fig. 6c, mouse ventricular tissues expressed a readily detectable level of sEH (detected as a single major band at a molecular mass of 60 kDa). However, there were no significant differences in the expression level in the three groups of animals (Fig. 6d).

4. Discussion

Our present study provides new evidence that treatment with sEHs can reduce infarct size and chronic cardiac remodeling post MI. Moreover, the use of sEHs results in the prevention of electrical remodeling post MI and in so doing, prevents the propensity for the development of cardiac arrhythmias as assessed by in vivo electrophysiologic studies. Importantly, we demonstrate that MI results in a significant decrease in EET/DHET and EpOMe/DHOMe ratios. Treatment with sEHs results in a decrease in several inflammatory cytokines which are significantly elevated at 3 weeks post MI. The reversal in the cytokines levels by sEHs is associated with the normalization of the ratios of EET/DHET and EpOMe/DHOMe in the MI model compared to untreated MI animals.

4.1. Mechanistic Insights into the observed beneficial effects of sEHI in the MI model

Oxygenated lipids are collectively known as oxylipins. One of the most biologically important groups of oxylipins is eicosanoids. Eicosanoids are potent modulators of immune responses and are derived from the 20-carbon atom arachidonic acid or similar fatty acids. The bulk of research and pharmaceutical industries have focused on the cyclooxygenase (COX) and lipoxygenase (LOX) pathways of arachidonic acid metabolisms. Indeed, the less explored pathway of cytochrome P450 enzymes can also transform arachidonic and linoleic acids to various biologically active compounds, including EETs or HETEs and EpOMEs, respectively. EETs and EpOMEs are further metabolized by sEHI to their corresponding diols, DHETs and DHOMEs, respectively [7,8].

EETs, generated mainly by enzyme CYP2J2 in the heart, have been shown to be cardioprotective [22]. All EET regioisomers show distinct vasodilatory actions, and function as endogenous hypotensive agents [23,24]. It has been demonstrated that EETs promote postischemic functional recovery in isolated mouse hearts overexpressing CYP2J2 gene [22,25]. Indeed, recent human epidemiological studies have identified associations between variations in EETs metabolic pathway genes and increased cardiovascular risk. A polymorphism of the CYP2J2 gene is associated with an increased risk of coronary artery disease [26], and EPHX2 (encoding for sEH) has also been identified as a potential cardiovascular disease-susceptibility gene [27]. These findings provide evidence supporting the notion that EETs play a significant cardioprotective role in the heart. The underlying mechanisms of EET-mediated cardioprotection have only begun to be addressed. In general, when EETs are metabolized to DHETs by sEH, their biological activities become less pronounced [11]. Thus, when the elimination of EETs is suppressed by sEHs, the steady-state cellular level of EETs increases in vivo, leading to cardioprotective effects in the setting of cardiac ischemia/reperfusion.

Both AEPU and t-AUCB are potent inhibitors of the sEH with half-blocking concentration (IC50) in the low nanomolar range. The fact that these two inhibitors of sEH with radically different physical properties both yield similar outcome suggests that the inhibition of sEH is involved in the observed beneficial effects in MI.

We have previously documented using both in vivo and in vitro models that sEHs can prevent the development of cardiac hypertrophy and block NF-κB activation [6]. NF-κB is inactive when bound to IκB, an inhibitory protein that is degraded by proteosomes when phosphorylated by IκB kinase (IKK) [28-30]. It has been shown that EETs inhibit IKK, preventing degradation of IκB. This maintains NF-κB in the inactive state and inhibits NF-κB-mediated gene transcription [10,11]. Our present study provides direct evidence for the anti-inflammatory action of sEHs by restoring EETs level as well as EET/
DHET and EpOME/DHOME ratios in post MI model. The increase in the EETs level would be expected to prevent the amplification of inflammation by inhibiting the transcription factor NF-κB resulting in a reduction in inflammatory cytokines.

4.2. Metabolomic analyses of the inflammatory lipid mediators and cytokines

Metabolomics analysis using LC/MS allows the monitoring of multiple plasma oxylipins, many of which are highly potent chemical mediators. As shown in Fig. 4a, the absolute levels of plasma EETs as well as the ratios of plasma EETs to their corresponding diols or DHETs increase in response to treatment with t-AUCB. This clearly indicates that levels of the sEH were sufficiently high to engage the sEH target. Moreover, there was a significant decrease in the 11(12), 14(15) and total EET/DHET ratios when comparing MI mice to the sham animals suggesting that these ratios may be used as biomarkers of MI. This effect was in each case reversed by treatment with t-AUCB. These data are particularly significant because of the cardioprotective and anti-hypertensive roles of EETs [9,31]. Similar conclusions can be drawn from the analysis of the linoleate series or 18:2 series of oxylipins. Linoleate epoxides are known as leukotoxins and isoleukotoxins (9 (10)-EpOME and 12(13)-EpOME) and their diols as the corresponding DHOMEs. The higher concentration makes these materials easier to monitor than the EET/DHET series. Their biological activities are quite distinct from those of the EET/DHET pairs with the DHOMEs being proinflammatory mediators which increase vascular permeability. The same trends in terms of absolute amounts of epoxides and ratios of epoxides to diols were observed in the 18:2 linoleate series as were seen with the 20:4 arachidonate series. These findings further suggest our notion that the P450 epoxygenase-sEH metabolic pathway is being activated during MI and the effects can be reversed by treatment with sEHIs.

In addition, data from oxylipin analyses provide a striking parallel to the inflammatory cytokines in this model with and without treatment. Specifically, there was a significant increase in the levels of several inflammatory cytokines including IFN-γ, MCP-1, IL-10 and IL-6 in the MI mice compared to sham animals. Moreover, treatment with sEHIs resulted in the normalization of these cytokines compared to untreated groups. IL-6 plays a significant role in the development of acute inflammatory responses while the chemokine MCP-1 is a potent monocyte chemoattractant. Importantly, our findings indicate that treatment with sEHIs increases EETs, EETs/DHETs and decreases inflammatory cytokines production.

On the other hand, TNF-α was not significantly altered in mouse MI model at 3 weeks. TNF-α is initially produced by resident monocytes and macrophages, is considered an early innate inflammatory mediator. It is possible that the sampling time may influence the findings. Further studies to follow the time course of the inflammatory cytokines as well as oxylipins analyses will likely provide additional important insights into the roles of inflammation in post MI remodeling. Indeed, oxylipins analyses may represent a new “omics” approach to potentially gain additional insights into the inflammatory processes in cardiovascular diseases.

Finally, even though we have documented a decrease in the ratios of EETs/DHETs as well as EpOME/DHOMEs in MI model, there was no documented increase in the expression of sEH enzyme at the protein level at 3 weeks of follow up. Future studies to follow the time course of the level of expression during MI may be warranted to further assess the role of the enzyme sEH in the inflammatory process post MI.

4.3. Reversal of electrical remodeling

We demonstrated that sEHIs can prevent cardiac remodeling post MI. Moreover, we were able to demonstrate that the use of sEHIs can prevent the development of electrical remodeling and ventricular arrhythmias which occur post MI. The cellular electrophysiology in cardiac hypertrophy and failure has been extensively studied in a variety of animal models. The single most consistent abnormality found in these studies is APD prolongation. The prolongation was due at least in part to the reduction in the 4-aminopyridine-sensitive Ca2+ independent transient outward K⁺ current (Ito) [32]. Specifically, treatment with sEHIs prevented the down-regulation of Ito and APD prolongation which occurs post MI.

4.4. Previous studies on the cardioprotective effects of sEHIs

The cardioprotective effects of sEHIs have drawn much attention in recent years. Several studies have documented the cardioprotective roles of sEH inhibition in myocardial ischemia-reperfusion injury using sEH knockout mice [33,34] as well as a dog MI model [35]. On the other hand, these previous studies have provided evidence for the cardioprotective effects of sEHIs mainly in acute MI while our study support the beneficial effects of two different compounds with inhibitory effects on sEH over a follow-up period of 3 weeks after MI. Apart from the documented biological effects, we utilized LC/MS/MS to analyze a group of oxylipins and provided evidence for a significant decrease in EET/DHET and EpOME/DHOME ratios in MI mice, thus, providing rationale for the use of sEHIs in MI. The decrease in EET/DHET and EpOME/DHOME ratios was found to be associated with a significant increase in several inflammatory cytokines at 3 weeks post MI. Treatment with sEHIs resulted in the normalization of the ratios of EET/DHET and EpOME/DHOME in the MI model compared to untreated MI animals. This was associated with the reversal in the elevation of cytokines levels by sEHIs at 3 weeks post MI.

4.5. Limitations of the study

Our study demonstrates that sEHIs result in a reduction in infarct size from MI as well as prevention of cardiac remodeling post MI at 3 weeks of follow up. Additional study will be necessary to examine the effects of sEHIs on the structural and electrical remodeling independent of its effects on the reduction in infarct size. Moreover, since sEHIs are vasodilatory, the observed beneficial effects may be due to a decrease in afterload on the heart [6].

In summary, we have demonstrated the efficacy of orally administered and structurally diverse sEHIs in two separate murine models of cardiac hypertrophy and failure. From a basic perspective, the results indicate a need for a greater understanding of epoxylipids in cardiac biology. From a clinical perspective, the results suggest that epoxide containing lipid mediators, their mimics, sEHIs or combinations of these agents may retard or even reverse cardiac hypertrophy and failure. Our study provides results on a class of new compound which could be used effectively in the setting of MI. Moreover, additional data from our laboratory suggest that sEHIs further transcriptionally downregulates COX2 enzyme of the cyclooxygenase pathway [36]. Hence, sEHIs may be predicted to act synergistically with COX inhibitor (e.g., aspirin) which is already used routinely in acute MI setting. Our study has important clinical significance in providing evidence for a novel alternative strategy in the treatment of cardiac failure and the prevention of ventricular arrhythmias associated with cardiac failure.

5. Competing interests statement

NC and BDH have filed patents for the University of California for sEH and cardiac hypertrophy therapy. BDH founded Arete Therapeutics to move sEH inhibitors into clinical trials.

Acknowledgments

The authors acknowledge the UC Davis Health System (UCDHS) Confocal Microscopy Facility. Supported by the Department of
Veteran Affairs Merit Review Grant and the National Institutes of Health grants (HL85844, HL85727) to N.C. Partial support were provided by NIEHS grant R37 ES02710, the NIEHS Superfund Basic Research Program (P42 ES04699), the NIEHS Center for Children’s Environmental Health and Disease Prevention (P01 ES11269) and a Technology Translational Grant from UCDS.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.yjmcc.2009.08.017.

References

