Beyond Plant Lists:

Helping homeowners move their houses (and neighborhoods) off the fire freeway

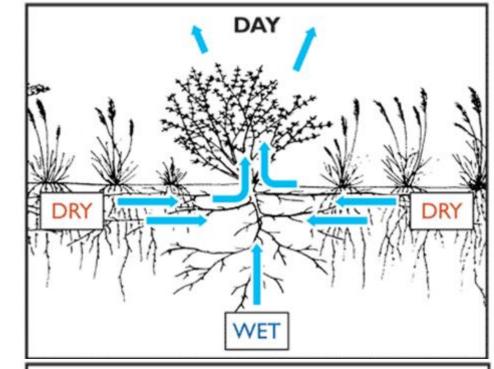
Steven Swain

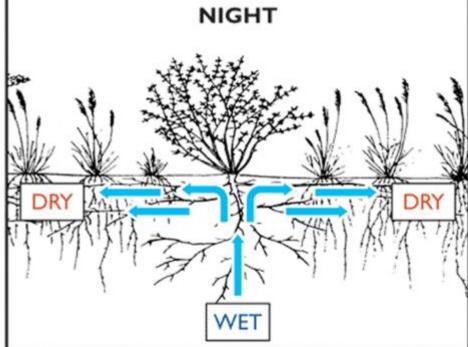
Environmental Horticulture Advisor, Marin & Sonoma Counties

March 2024

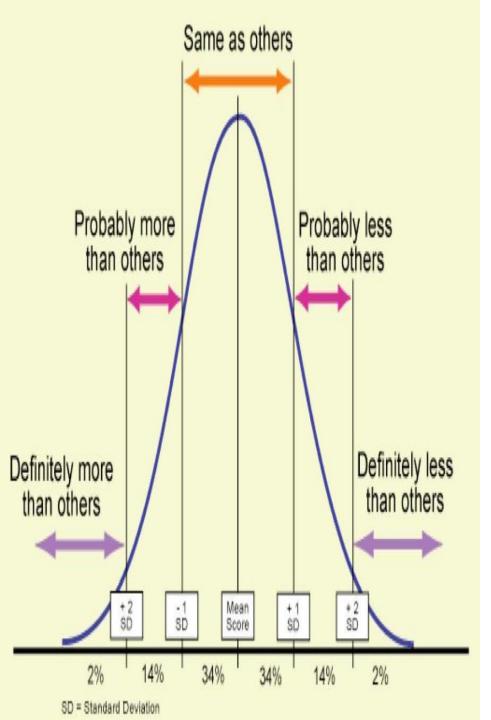
First, a little context

- Is it really about the plants?
 - If we're trying to save a house, we often look beyond the house to assess what needs changing
 - LOOK AT THOSE EUCALYPTUS TREES! Nope.
- What if it's about the houses?
- What if tree survival is directly predicted by distance from houses?
- How close is everything?




Community

- Plant flammability lists mostly meaningless
 - Some based on wildland fire behavior
- Community structure important
- This is why design and maintenance are important
 - Landscape is a community
- Design: interruption of fuel ladders / conduits
 - Horizontal
 - Vertical
- Maintenance: think moist
 - Remove dead/dry fuels
 - Keep plants hydrated
 - Soils may be dry?
 - Plants manage water


Plants as water managers?

- The soil community
- By day, as we all learned in school
- At night, water flows to mycorrhizae
 - Transports sugars to fungi
 - Fungi take sugars, use water to digest
 - Water taken up by trees at sunrise

Plant selection

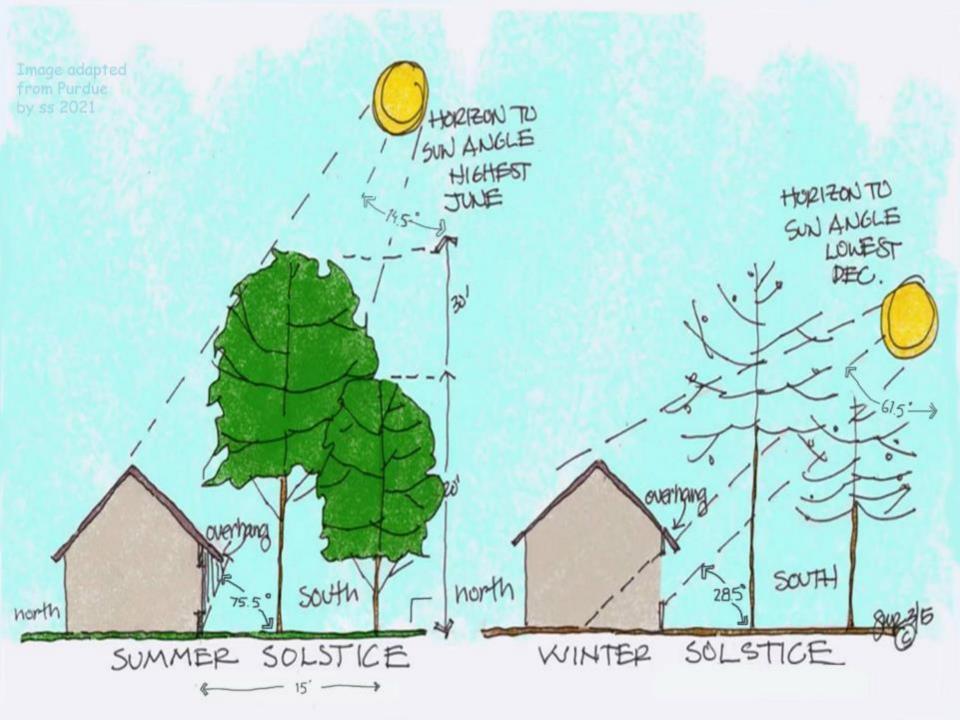
- We don't even know what to evaluate for fire
- We can see differences
 - Even then the lists don't agree
 - But they make a very short list
 - 2% of plant species or less
 - Succulents and forbs
 - Urban ecological disaster?
- Plants serve many roles in the landscape
 - Shade is a critical factor in C use
 - Vegetable gardens
- Natives stay hydrated with little water
 - Wildlife benefits
 - Established communities
 - Look south for plant lists

Quarles' Mulch Flammability Study

- Composted materials less flammable
- Finer materials don't burn as well as coarse materials
- The safest organic mulches are fine composts
- Decorative dyed wood chips burn really well
- Fir bark burns well too
 - Bonus flaming embers blow in the wind!

The C challenge

- Urban trees have an outsized
 C impact in a good way
- C sequestration in California summers?
 - Only if there's water (cities?)
 - $-6CO_2 + 6H_2O > sunlight > C_6H_{12}O_6 + 6O_2$
- It's about shade and wind
 - Location specific
 - Generally not on the north or south sides of house
 - Locations west of the house are typically the best
 - Locations east for can work well for deciduous trees


Winter Shade

- Percent shade of deciduous trees: ~20%
- Reduced sunlight and heat
 - Minor effect
 - Sun is low and weak
 - Many long shadows
 - Days are short

Summer Shade

- Reduced sunlight (heat)
 - Major effect
 - Sun is high and intense
 - Noon shadows are small
 - But afternoon shadows are large
 - Days are long

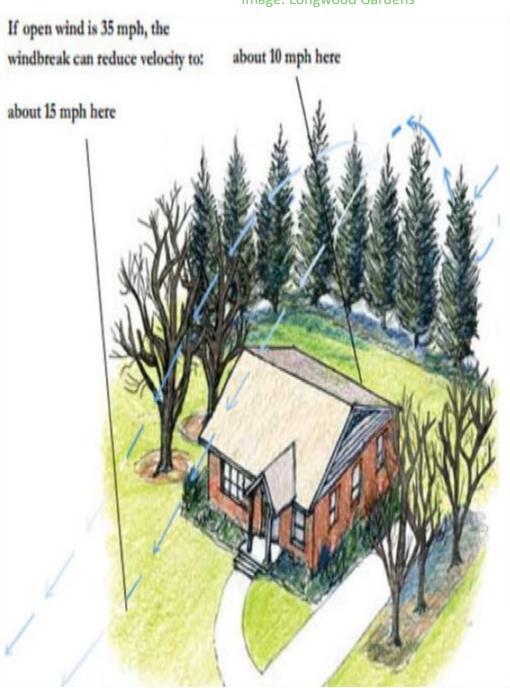

Noon July Noon 3 pm September

Image: Missouri Cooperative Extension

Tree location: sun

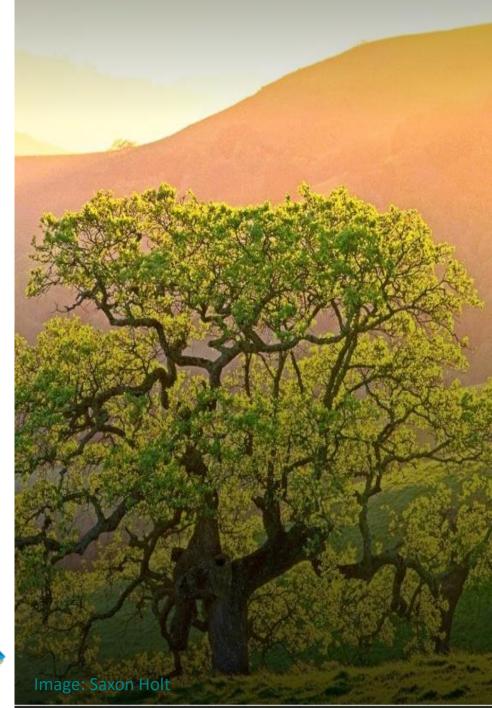
- North: no appreciable effect
- East: morning effect
- South, Winter: slight (-) effect for deciduous
- South, Summer: only (+) if close to house
 - Fire risk?
- West: afternoon effect

Tree location: wind

- Most Californian's live in locations with westerly prevailing winds
 - Coast
- Evergreens provide best wind abatement
- Horizontal wind abatement = 3x
 tree height @ ~35mph
- On the coast, this is mostly a winter effect
- Trees on north side of house have a slight negative energy effect
 - Wind channeled onto house

Carbon costs

Shade


- Interior house temps reduced ~8-20° F.
 - 8° F reduction > 10% energy savings for AC
 - Bigger savings in milder climates
 - Heating calculations more complicated (up to 3% / degree F).
- Reduce electricity usage > reduce carbon emissions
- The big benefit of urban trees is that they can reduce carbon emissions at 10x the rate that trees sequester carbon.
- How effective a tree is at reducing heating & cooling costs is almost entirely dependent on where it's planted

Carbon costs

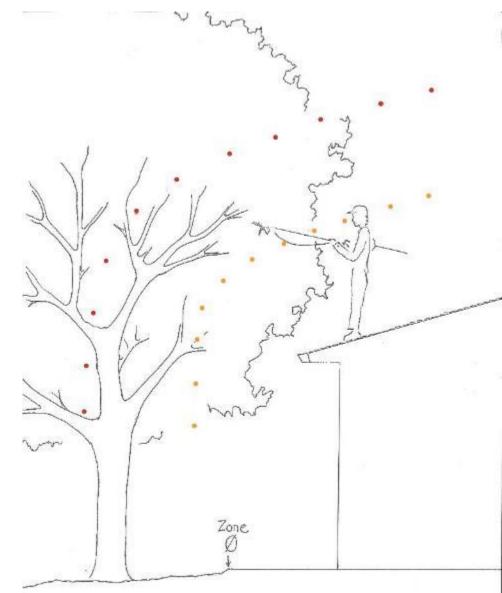
- Big trees sequester a lot of carbon
 - Use a lot of water
 - Water pumping uses 25% of California's total electricity
 - Marin's #1 electricity user: Marin Water
 - Irrigation = carbon emissions
 - Just wait until we get desalination

What tree?

- A tree that will provide summer shade and/or wind screening without using irrigation water
 - Native California species
 - Endemic to your neighborhood
 - Well suited to your particular site

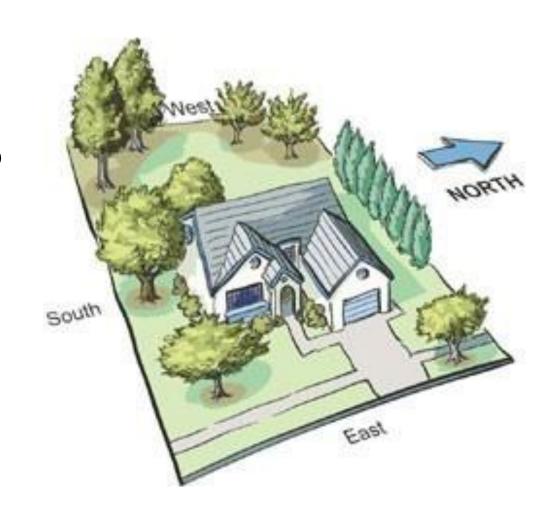
Climate change

- Global warming
- How to pick plants for an uncertain future
 - Will our future climate be equivalent to a more southern city?
 - Santa Barbara as a proxy for the North Bay?
 - Will our future climate revert to a prehistoric regime?
 - Monsoon rainy season?
 - Engleman oaks?


Example plan

- Plans always site specific
 - Plant deciduous trees 30' on E side and 10' from house on S side
 - Summer shade
 - Winter sun
 - Plant evergreens 50' from house on W side
 - Afternoon shade year round
 - Winter wind break reduces heating costs
 - No trees on N side
 - Or plant >30' from house

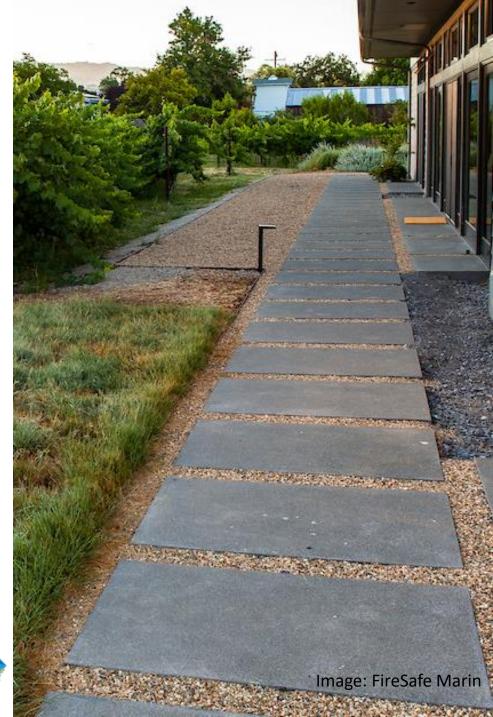
Roof clearance


- 10 feet of horizontal clearance from chimneys
 - Supporting data?
 - Probably okay
- Some sources say 10 feet from roof edge
 - Ever tried to prune 10 feet from the top of a roof?
 - Five foot gutter radius should be sufficient
 - We need to be able to clean gutters regularly

Roof clearance

- 2019 study by Syphard and Keeley is sometimes cited as justification for no branches over roofs
- Alexandra Syphard has directly disavowed this interpretation
 - Ellie Insley, Pers comm., 2020
 - Balance between benefits and liabilities
 - Want to be comfortable and save money? Keep your trees and clean your gutters

Trees: summary


- Trees are valuable assets to property
- Huge economic and ecological value
 - Sun
 - Shade
 - Windbreak
- Proper placement is fundamental to performance
- Proper maintenance of trees and gutters is critical for fire safety

Gutter guards

- Doesn't stop sand from composite roofs
 - Sand buildup in gutters
 - Moss growth on sand
 - Paperwasps, etc.
 - Much harder to clean
- No gutters?
 - Gravel area in zone 0?

Where does the fire start?

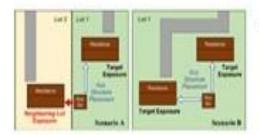
- So, if you want to save your house, don't start with the plants
 - Start with the house.
- Because the biggest threat to the average home isn't the plants.
- It's the (your) house itself. Really.
 - https://ucanr.edu/sites/fire/Prepare/Building/
 - And if it isn't your house ...
 - It's your neighbor's house.

It's about community

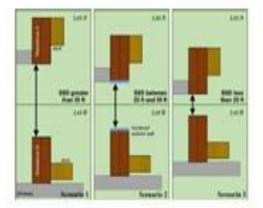
- The biggest threat from a wildfire?
 - Embers
- The biggest threat from an *urban* fire?
 - Your neighbor's house?
 - How do we fight fires as neighborhoods?

It's about community

- Neighborhood planning
 - Neighborhood meetings
 - Community gutter cleaning?
 - Escape routes
 - More than one!
- City planning
 - Roads
 - Building standards
 - Permits



It's about density


- Low: Properties with >100 feet between buildings
 - Ember hardening
 - CalFire clearances
- Medium: Properties with 30-100 feet between buildings
 - Above, plus ...
 - Radiant/flame hardening specific walls
- High: Properties with < 30 feet between buildings:
 - Develop or engage a community
 FireSafe Council
- Where you don't have enough space, consider moving stuff

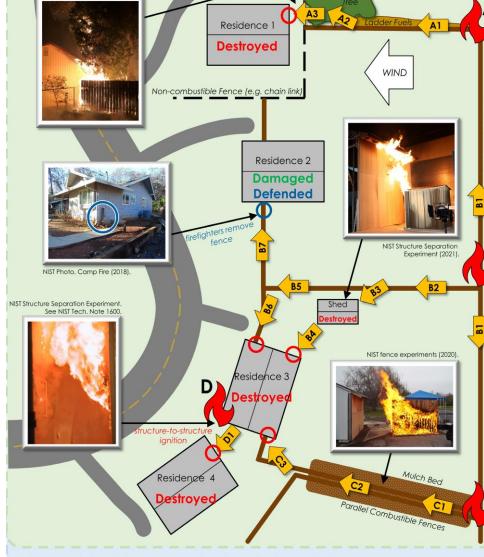
WUI Structure/Parcel/Community Fire Hazard Mitigation Methodology

Alexander Maranghides Eric D. Link Steven Hawks Jun McDougald Stephen L. Quarles Damel J. Gorham Shonah Nazare

This publication is available free of charge from: https://doi.org/10.6028/NIST TN 2205

Table 2. WUI Types classified by structure separation distance (SSD) and typical parcel size.

Туре		·	Typical Parcel Size	Typical Housing Density
#	WUI Type Name	SSD (ft)	(ac)	(struct/ac)
1	High Density Interface – Perimeter	6ª to 30	< 0.5	2 to 8 +
2	High Density Interface – Interior ^b	6ª to 30	< 0.5	2 to 8 +
3	Medium Density Interface – Perimeter	30 to 100	0.5 to 1+	< 2
4	Medium Density Interface – Interior ^b	30 to 100	0.5 to 1+	< 2
5	Medium Density Intermix	30 to 100	0.5 to 1+	< 2
6	Low Density Interface	100+	1+	< 1
7	Low Density Intermix	100+	1+	< 1


For SI: 1 ft = 0.305 m, 1 ac = 0.4 ha

a representative of parcels with a 3 ft setback (common for new construction of sprinklered residences)

b interior of community defined as > 0.25 mi (400 m) from wildlands

Structure Separation Distance (SSD)

- Houses
- Sheds and other outbuildings
- Significant woody vegetation
- RV's
- Woodpiles
- Other combustibles
- Maximize separation between these (at least 25 feet)
- Fences are conduits. Keep away from structures, or use non-flammable fence materials

Embers can bring fire into communities. Once fire has started, fire spreads along multiple pathways:

- A: Spot fire ignites fence, burning along ladder fuels (A1) to larger vegetation (A2), and ignites Residence 1 on adjacent parcel (A3).
- **B**: Fence ignition propagates fire on multiple parcels (B1, B2). Fence ignites shed (B3). Exposures from shed and fence ignite Residence 3 (B4, B6).
 - Fence ignites Residence 2 (B7). Defensive actions save Residence 2.
- C: Parallel fences on adjacent parcels exponentially intensify fire exposure (C1, C2) which ignites Residence 3 (C3).
- D: The exposure from burning Residence 3 ignites Residence 4 (D1).

Key terms

- Example: Interface / intermix
 - Subcategories of WUI (>0.2 HU/acre)
 - Used slightly differently by:
 - Feds
 - CalFire
 - Common interpretation
 - Defined in the document
 - Interface
 - Higher structure density (HU/acre)
 - Smaller SSD
 - Not usually native vegetation
 - Not urban / not high density (=> 8HU/acre)
 - Intermix
 - Lower structure density (acres/HU)
 - Greater Structure Separation Distance (SSD)
 - Usually native vegetation
 - Also not urban / not high density

Table 3. Structure and parcel hardening effectiveness.

# WUI Type	Probability of Structure Survivability if Neighboring Structure Ignites	Potential Fire ^a Exposure from Burning Neighboring Structure	Exposure from Other Parcel Fuels	Exposure ^b from Wildlands	Impact of Structure Ignition on Fire spread in Community	Likely Effectiveness of Partial Structure/ Parcel Hardening	Community/ Neighborhood Participation
1 HD Interface - Perimeter	Low	High	f (fuels, dist.) c	Variable	High	Low	Necessary
2 HD Interface - Interior	Low	High	f (fuels, dist.) c	Low	High	Low	Necessary
3 MD Interface - Perimeter	f (hardening)	Moderate	f (fuels, dist.) e	Variable	Moderate	f (wildland fuels, parcel fuels)	Desired
4 MD Interface Interior	f (hardening)	Moderate	f (fuels, dist.) e	Low	Moderate	f(parcel fuels) ^d	Desired
5 MD Intermix	f (hardening)	Moderate	f (fuels, dist.) e	Variable	Moderate	f (wildland fuels, parcel fuels)	Desired
6 LD Interface	f (hardening)	Low	f (fuels, dist.)e	Variable	Low ^f	f (parcel fuels)	Desired
7 LD Intermix	f (hardening)	Low	f (fuels, dist.) e	Variable	Low ^f	f(parcel fuels)	Desired

HD = high density, MD = medium density, LD = low density

f(X) indicates "a function of X" (e.g., the level of exposure from other parcel fuels is a function of the fuels and distance from the target structure)

^a flames and radiation

b based on fire history, fuel loading, wind, and topography/aspect; wildland fuel treatments may not be at the control of the community

c parcel-level mitigation will have limited impact if nearby upwind structures catch on fire

^d would be a function of wildland fuel treatment AND hardening of most/all perimeter structures and parcels

 $^{^{\}mathbf{e}}$ parcel-level mitigation, including wildland fuel treatment, together with home hardening, will enhance structure ignition resistance

f ignitions due to embers from burning residential structures have been observed as far as 200 ft to 300 ft downwind

Puttin' the fence in defensible

- Hedges
 - Not really fire safe?
 - Why not?
- Fire safe zones
 - 0: 0-5 feet from house
 - Ember defense zone
 - "Law in 2023" > 2025?
 - 1: 5-30 feet from house
 - Lean, clean, & green
 - Well spaced smaller plants
 - This is sometimes all the space we have!
 - 2: 30-100 feet from house
 - Fuels reduction zone
 - Lucky you (?)

Zones

- 3 Landscaping zones
 - Design for maintenance
 - Non-continuous fuels
 - Fire-resistant plant lists not supported by science (Bethke, 2016)
 - Plants are not passive
 - But they need resources to work with
- Design & planting guidance
 - Water-wise
 - Ecologically relevant
 - Easy to implement
 - Or at least clear on what's required

Okay, so what DO we plant?

- There are a lot of factors to consider
 - Water use (local water districts)
 - Invasiveness (Cal IPC, ranchers, parks, water districts ...)
 - Global warming

Natives?

- Already part of an established ecosystem
 - Including mycorrhizal fungi
 - Better network building
 - Many species don't grow anywhere else
- Adapted to local conditions
 - Check your microclimate and soils
 - Normally stay hydrated with average rainfall
 - Hydrated plants are more fire resistant than drought stressed plants
 - Local fauna depend on these species

Other Mediterranean plants?

- Already adapted to our climate
 - May displace natives
 - Not always part of the local ecosystem
 - Exotic Mediterranean plants may be fine in your garden
 - Don't let them out into the WUI or beyond.
- So yes, we can grow just about anything, including
 - Japanese knotweed
 - Blue gum eucalyptus
 - Gorse
 - French broom
 - Etc.
 - So just because we can, doesn't mean we should

Which natives?

- California has myriad local microclimates
- Global warming is likely to shift these
 - Nobody knows for sure exactly how this will turn out
 - Just warming?
 - Weather pattern shifts
 - Monsoon was the weather pattern for much of California 25k years ago ...
 - Disaster for California agriculture?
 - Would be great news for Engelmann oaks and other relictual species

The southern proxy model

- Proxies a southern city to model a shift in climate
- Marin is projected to look like San Luis
 Obispo area
 - Still zones 14-17
- Coastal influence thins, inland areas go to zone 7

Rare species

- Challenges
 - Limited populations
 - Restricted gene pools
 - Less adaptive
 - Legal issues
- Assisted migration
- Consider rare species in San Luis Obispo?

The new plant palette?

- Water: We need to adapt our plant palette to San Luis Obispo / Santa Maria / Santa Barbara
- Fire: Native species adapted to a future climate
 - better adapted to handle fire
 - Best bets for defensible space
- Native Plants: Focus on the conversion, finding the right plants for the right place

Is the climate model right?

- Nobody's certain
 - Models are just guesses based on best available data
 - Proofing required
 - We'll know what models were right when we get there
- There are a lot of unknowns
 - Historical precedent
 - Monsoon rain patterns?
 - Increased vulcanism?

Home hardening is THE most important step

- Roof: Class A
- Gutters: Steel. Guards? It's about keeping them CLEAN
- Attic & basement ventilation: 1/8" mesh, Vulcan vents, etc.
- Decks: Non flammable ... and a whole lot more
- Refer clients to their local fire department for home inspections
- https://ucanr.edu/sites/fire/Preparedness/Building/
- We are home gardeners, not home hardeners
 - Please don't try to become experts on home hardening. This is not something that *Master Gardeners* should be doing
 - UC is self-insured ...

- Landscape
- At this point, there are no known science-based plant lists
 - We know that design and maintenance are bigger factors
- Zone 0 is almost part of the house (0-5 feet)
 - Ember resistant zone
 - Pay special attention to interior corners
 - Legal requirements still being worked out
 - Little to no fuel in this zone, no flammable mulch (?)
 - Or maybe put an inch or two down in November. By May it'll practically be gone.
 - Non-flammable fencing, especially gates
 - No outbuildings in this zone, especially at corners (> 8 feet clearance)
 - No hedges

- Zone 1 (5-30 feet)
 - Lean, clean, and green
 - Mulch: 3 inches or less, organic okay
 - Vegetation: in islands with vertical and horizontal separation
 - Island size: small enough that you can reach everything in it
 - E.g.: 4' width if there's access from 2 sides, 3' width if access is 1 side only
 - Path (non flammable zone) size: big enough you can easily move a wheelbarrow through (about 3 feet)
- Zone 2 (30-100 feet)
 - Fuels reduction zone, irrigation not so critical here?
 - Outbuildings, firewood piles, etc. belong here, and 30 feet from eachother – PLUS they must be fire-hardened
 - Interruption of horizontal and vertical fire paths

- Evacuation routes, as zone 2, 10 feet to side of road
- If you're in a low-density situation
 - Calfire clearances
 - Ember hardening of all structures
- If you're in medium-density situation, then as above, plus
 - Sheds, other structures 30 feet from house, 8 feet from fences
 - Armor (e.g.: hardy plank) sides of house within 30 feet of neighbors
- If you're in high-density situation, then as above, plus
 - Succeed or fail as a community
 - Establish or join your local fire-safe council
 - Sheds, other structures > 8 feet from house & non-flammable
 - Plan ahead: Go bags, know your escape route, get out early

References

Curwen, T; Serna, J. (2018) The Camp fire burned homes but left trees standing. The science behind the fire's path. Los Angeles Times. https://www.latimes.com/local/california/la-me-camp-fire-lessons-20181120-story.html

Syphard AD, Keeley JE (2019) Factors Associated with Structure Loss in the 2013-2018 California Wildfires. *Fire* 2, 49; https://www.mdpi.com/2571-6255/2/3/49

Knapp, E.E; Valachovic, Y.S; Quarles, S.L; Johnson, N.G. (2021) Housing arrangement and vegetation factors associated with single-family home survival in the 2018 Camp Fire, California. *Fire Ecology*. https://fireecology.springeropen.com/articles/10.1186/s42408-021-00117-0

Maranghides, A; Link, E.D; Hawks, S; McDougald, J; Quarles, S.L; Gorham, D.J; Shonali, N (2022) WUI Structure/Parcel/Community Fire Hazard Mitigation Methodology. National Institute of Science and Technology, U.S. Department of Commerce https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.2205.pdf

McPherson, E.G; Simpson, J.R. (1999) Carbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree Planters. USDA PSW GTR 171. https://www.fs.fed.us/psw/topics/urban forestry/products/cufr 43.pdf

Valachovic, Y; Quarles, S.L; Swain, S.V. (2021) Reducing the Vulnerability of Buildings to Wildfire: Vegetation and Landscaping Guidance. UC ANR Publication 8695. https://anrcatalog.ucanr.edu/pdf/8695.pdf

